/introduction_to_ml_with_python

Notebooks and code for the book "Introduction to Machine Learning with Python"

Primary LanguageJupyter Notebook

Introduction to Machine Learning with Python

This repository holds the code for the forthcomming book "Introduction to Machine Learning with Python" by Andreas Mueller and Sarah Guido. You can find details about the book on the O'Reilly website.

The books requires the current development version of scikit-learn, that is 0.18-dev. Most of the book can also be used with previous versions of scikit-learn, though you need to adjust the import for everything from the model_selection module, mostly cross_val_score, train_test_split and GridSearchCV.

This repository provides the notebooks from which the book is created, together with the mglearn library of helper functions to create figures and datasets.

For the curious ones, the cover depicts a hellbender

Setup

To run the code, you need the packages numpy, scipy, scikit-learn, matplotlib, pandas and pillow. Some of the visualizations of decision trees and neural networks structures also require graphviz.

The easiest way to set up an environment is by installing Anaconda.

Installing packages with conda:

If you already have a Python environment set up, and you are using the conda package manager, you can get all packages by running

conda install numpy scipy scikit-learn matplotlib pandas pillow graphviz

and then also

pip install graphviz

(Explanation: the conda package graphiz is the C library, not the python library)

Installing packages with pip

If you already have a Python environment and are using pip to install packages, you need to run

pip install numpy scipy scikit-learn matplotlib pandas pillow graphviz

You also need to install the graphiz C-library, which is easiest using a package manager. If you are using OS X and homebrew, you can brew install graphviz. If you are on Ubuntu or debian, you can apt-get install graphviz. Installing graphviz on Windows can be tricky and using conda / anaconda is recommended.

cover