/simclr-pytorch

PyTorch implementation of SimCLR: supports multi-GPU training and closely reproduces results

Primary LanguageJupyter NotebookMIT LicenseMIT

SimCLR PyTorch

This is an unofficial repository reproducing results of the paper A Simple Framework for Contrastive Learning of Visual Representations. The implementation supports multi-GPU distributed training on several nodes with PyTorch DistributedDataParallel.

How close are we to the original SimCLR?

The implementation closely reproduces the original ResNet50 results on ImageNet and CIFAR-10.

Dataset Batch Size # Epochs Training GPUs Training time Top-1 accuracy of Linear evaluation (100% labels) Reference
CIFAR-10 1024 1000 2v100 13h 93.44 93.95
ImageNet 512 100 4v100 85h 60.14 60.62
ImageNet 2048 200 16v100 55h 65.58 65.83
ImageNet 2048 600 16v100 170h 67.84 68.71

Pre-trained weights

Try out a pre-trained models Open In Colab

You can download pre-trained weights from here.

To eval the preatrained CIFAR-10 linear model and encoder use the following command:

python train.py --problem eval --eval_only true --iters 1 --arch linear \
--ckpt pretrained_models/resnet50_cifar10_bs1024_epochs1000_linear.pth.tar \
--encoder_ckpt pretrained_models/resnet50_cifar10_bs1024_epochs1000.pth.tar

To eval the preatrained ImageNet linear model and encoder use the following command:

export IMAGENET_PATH=.../raw-data
python train.py --problem eval --eval_only true --iters 1 --arch linear --data imagenet \
--ckpt pretrained_models/resnet50_imagenet_bs2k_epochs600_linear.pth.tar \
--encoder_ckpt pretrained_models/resnet50_imagenet_bs2k_epochs600.pth.tar

Enviroment Setup

Create a python enviroment with the provided config file and miniconda:

conda env create -f environment.yml
conda activate simclr_pytorch

export IMAGENET_PATH=... # If you have enough RAM using /dev/shm usually accelerates data loading time
export EXMAN_PATH=... # A path to logs

Training

Model training consists of two steps: (1) self-supervised encoder pretraining and (2) classifier learning with the encoder representations. Both steps are done with the train.py script. To see the help for sim-clr/eval problem call the following command: python source/train.py --help --problem sim-clr/eval.

Self-supervised pretraining

CIFAR-10

The config cifar_train_epochs1000_bs1024.yaml contains the parameters to reproduce results for CIFAR-10 dataset. It requires 2 V100 GPUs. The pretraining command is:

python train.py --config configs/cifar_train_epochs1000_bs1024.yaml

ImageNet

The configs imagenet_params_epochs*_bs*.yaml contain the parameters to reproduce results for ImageNet dataset. It requires at 4v100-16v100 GPUs depending on a batch size. The single-node (4 v100 GPUs) pretraining command is:

python train.py --config configs/imagenet_train_epochs100_bs512.yaml

Logs

The logs and the model will be stored at ./logs/exman-train.py/runs/<experiment-id>/. You can access all the experiments from python with exman.Index('./logs/exman-train.py').info().

See how to work with logs Open In Colab

Linear Evaluation

To train a linear classifier on top of the pretrained encoder, run the following command:

python train.py --config configs/cifar_eval.yaml --encoder_ckpt <path-to-encoder>

The above model with batch size 1024 gives 93.5 linear eval test accuracy.

Pretraining with DistributedDataParallel

To train a model with larger batch size on several nodes you need to set --dist ddp flag and specify the following parameters:

  • --dist_address: the address and a port of the main node in the <address>:<port> format
  • --node_rank: 0 for the main node and 1,... for the others.
  • --world_size: the number of nodes.

For example, to train with two nodes you need to run the following command on the main node:

python train.py --config configs/cifar_train_epochs1000_bs1024.yaml --dist ddp --dist_address <address>:<port> --node_rank 0 --world_size 2

and on the second node:

python train.py --config configs/cifar_train_epochs1000_bs1024.yaml --dist ddp --dist_address <address>:<port> --node_rank 1 --world_size 2

The ImageNet the pretaining on 4 nodes all with 4 GPUs looks as follows:

node1: python train.py --config configs/imagenet_train_epochs200_bs2k.yaml --dist ddp --world_size 4 --dist_address <address>:<port> --node_rank 0
node2: python train.py --config configs/imagenet_train_epochs200_bs2k.yaml --dist ddp --world_size 4 --dist_address <address>:<port> --node_rank 1
node3: python train.py --config configs/imagenet_train_epochs200_bs2k.yaml --dist ddp --world_size 4 --dist_address <address>:<port> --node_rank 2
node4: python train.py --config configs/imagenet_train_epochs200_bs2k.yaml --dist ddp --world_size 4 --dist_address <address>:<port> --node_rank 3

Attribution

Parts of this code are based on the following repositories:v

Acknowledgements

  • This work was supported in part through computational resources of HPC facilities at NRU HSE