BlindDPS/blind-dps

Training code

kylechang523 opened this issue · 2 comments

Hi,

I'm super interested in this repo, is it possible to release the training code for learning purposes?

Best,
Kaiyu

How is the kernel model of the article trained? I tried to use guided-diffusion to train the model I generated, and found that the following problems occurred when exporting the model:
RuntimeError: Error(s) in loading state_dict for UNetModel:
Missing key(s) in state_dict: "input_blocks.2.0.in_layers.0.weight", "input_blocks.2.0.in_layers.0.bias", "input_blocks.2.0.in_layers.2.weight", "input_blocks.2.0.in_layers.2.bias", "input_blocks.2.0.emb_layers.1.weight", "input_blocks.2.0.emb_layers.1.bias", "input_blocks.2.0.out_layers.0.weight", "input_blocks.2.0.out_layers.0.bias", "input_blocks.2.0.out_layers.3.weight", "input_blocks.2.0.out_layers.3.bias", "input_blocks.4.0.in_layers.0.weight", "input_blocks.4.0.in_layers.0.bias", "input_blocks.4.0.in_layers.2.weight", "input_blocks.4.0.in_layers.2.bias", "input_blocks.4.0.emb_layers.1.weight", "input_blocks.4.0.emb_layers.1.bias", "input_blocks.4.0.out_layers.0.weight", "input_blocks.4.0.out_layers.0.bias", "input_blocks.4.0.out_layers.3.weight", "input_blocks.4.0.out_layers.3.bias", "input_blocks.6.0.in_layers.0.weight", "input_blocks.6.0.in_layers.0.bias", "input_blocks.6.0.in_layers.2.weight", "input_blocks.6.0.in_layers.2.bias", "input_blocks.6.0.emb_layers.1.weight", "input_blocks.6.0.emb_layers.1.bias", "input_blocks.6.0.out_layers.0.weight", "input_blocks.6.0.out_layers.0.bias", "input_blocks.6.0.out_layers.3.weight", "input_blocks.6.0.out_layers.3.bias", "input_blocks.8.0.in_layers.0.weight", "input_blocks.8.0.in_layers.0.bias", "input_blocks.8.0.in_layers.2.weight", "input_blocks.8.0.in_layers.2.bias", "input_blocks.8.0.emb_layers.1.weight", "input_blocks.8.0.emb_layers.1.bias", "input_blocks.8.0.out_layers.0.weight", "input_blocks.8.0.out_layers.0.bias", "input_blocks.8.0.out_layers.3.weight", "input_blocks.8.0.out_layers.3.bias", "input_blocks.10.0.in_layers.0.weight", "input_blocks.10.0.in_layers.0.bias", "input_blocks.10.0.in_layers.2.weight", "input_blocks.10.0.in_layers.2.bias", "input_blocks.10.0.emb_layers.1.weight", "input_blocks.10.0.emb_layers.1.bias", "input_blocks.10.0.out_layers.0.weight", "input_blocks.10.0.out_layers.0.bias", "input_blocks.10.0.out_layers.3.weight", "input_blocks.10.0.out_layers.3.bias", "output_blocks.1.1.in_layers.0.weight", "output_blocks.1.1.in_layers.0.bias", "output_blocks.1.1.in_layers.2.weight", "output_blocks.1.1.in_layers.2.bias", "output_blocks.1.1.emb_layers.1.weight", "output_blocks.1.1.emb_layers.1.bias", "output_blocks.1.1.out_layers.0.weight", "output_blocks.1.1.out_layers.0.bias", "output_blocks.1.1.out_layers.3.weight", "output_blocks.1.1.out_layers.3.bias", "output_blocks.3.2.in_layers.0.weight", "output_blocks.3.2.in_layers.0.bias", "output_blocks.3.2.in_layers.2.weight", "output_blocks.3.2.in_layers.2.bias", "output_blocks.3.2.emb_layers.1.weight", "output_blocks.3.2.emb_layers.1.bias", "output_blocks.3.2.out_layers.0.weight", "output_blocks.3.2.out_layers.0.bias", "output_blocks.3.2.out_layers.3.weight", "output_blocks.3.2.out_layers.3.bias", "output_blocks.5.1.in_layers.0.weight", "output_blocks.5.1.in_layers.0.bias", "output_blocks.5.1.in_layers.2.weight", "output_blocks.5.1.in_layers.2.bias", "output_blocks.5.1.emb_layers.1.weight", "output_blocks.5.1.emb_layers.1.bias", "output_blocks.5.1.out_layers.0.weight", "output_blocks.5.1.out_layers.0.bias", "output_blocks.5.1.out_layers.3.weight", "output_blocks.5.1.out_layers.3.bias", "output_blocks.7.1.in_layers.0.weight", "output_blocks.7.1.in_layers.0.bias", "output_blocks.7.1.in_layers.2.weight", "output_blocks.7.1.in_layers.2.bias", "output_blocks.7.1.emb_layers.1.weight", "output_blocks.7.1.emb_layers.1.bias", "output_blocks.7.1.out_layers.0.weight", "output_blocks.7.1.out_layers.0.bias", "output_blocks.7.1.out_layers.3.weight", "output_blocks.7.1.out_layers.3.bias", "output_blocks.9.1.in_layers.0.weight", "output_blocks.9.1.in_layers.0.bias", "output_blocks.9.1.in_layers.2.weight", "output_blocks.9.1.in_layers.2.bias", "output_blocks.9.1.emb_layers.1.weight", "output_blocks.9.1.emb_layers.1.bias", "output_blocks.9.1.out_layers.0.weight", "output_blocks.9.1.out_layers.0.bias", "output_blocks.9.1.out_layers.3.weight", "output_blocks.9.1.out_layers.3.bias".
Unexpected key(s) in state_dict: "input_blocks.2.0.op.weight", "input_blocks.2.0.op.bias", "input_blocks.4.0.op.weight", "input_blocks.4.0.op.bias",

I really hope the author can see this question. Your answer is very important to me.

How is the kernel model of the article trained? I tried to use guided-diffusion to train the model I generated, and found that the following problems occurred when exporting the model: RuntimeError: Error(s) in loading state_dict for UNetModel: Missing key(s) in state_dict: "input_blocks.2.0.in_layers.0.weight", "input_blocks.2.0.in_layers.0.bias", "input_blocks.2.0.in_layers.2.weight", "input_blocks.2.0.in_layers.2.bias", "input_blocks.2.0.emb_layers.1.weight", "input_blocks.2.0.emb_layers.1.bias", "input_blocks.2.0.out_layers.0.weight", "input_blocks.2.0.out_layers.0.bias", "input_blocks.2.0.out_layers.3.weight", "input_blocks.2.0.out_layers.3.bias", "input_blocks.4.0.in_layers.0.weight", "input_blocks.4.0.in_layers.0.bias", "input_blocks.4.0.in_layers.2.weight", "input_blocks.4.0.in_layers.2.bias", "input_blocks.4.0.emb_layers.1.weight", "input_blocks.4.0.emb_layers.1.bias", "input_blocks.4.0.out_layers.0.weight", "input_blocks.4.0.out_layers.0.bias", "input_blocks.4.0.out_layers.3.weight", "input_blocks.4.0.out_layers.3.bias", "input_blocks.6.0.in_layers.0.weight", "input_blocks.6.0.in_layers.0.bias", "input_blocks.6.0.in_layers.2.weight", "input_blocks.6.0.in_layers.2.bias", "input_blocks.6.0.emb_layers.1.weight", "input_blocks.6.0.emb_layers.1.bias", "input_blocks.6.0.out_layers.0.weight", "input_blocks.6.0.out_layers.0.bias", "input_blocks.6.0.out_layers.3.weight", "input_blocks.6.0.out_layers.3.bias", "input_blocks.8.0.in_layers.0.weight", "input_blocks.8.0.in_layers.0.bias", "input_blocks.8.0.in_layers.2.weight", "input_blocks.8.0.in_layers.2.bias", "input_blocks.8.0.emb_layers.1.weight", "input_blocks.8.0.emb_layers.1.bias", "input_blocks.8.0.out_layers.0.weight", "input_blocks.8.0.out_layers.0.bias", "input_blocks.8.0.out_layers.3.weight", "input_blocks.8.0.out_layers.3.bias", "input_blocks.10.0.in_layers.0.weight", "input_blocks.10.0.in_layers.0.bias", "input_blocks.10.0.in_layers.2.weight", "input_blocks.10.0.in_layers.2.bias", "input_blocks.10.0.emb_layers.1.weight", "input_blocks.10.0.emb_layers.1.bias", "input_blocks.10.0.out_layers.0.weight", "input_blocks.10.0.out_layers.0.bias", "input_blocks.10.0.out_layers.3.weight", "input_blocks.10.0.out_layers.3.bias", "output_blocks.1.1.in_layers.0.weight", "output_blocks.1.1.in_layers.0.bias", "output_blocks.1.1.in_layers.2.weight", "output_blocks.1.1.in_layers.2.bias", "output_blocks.1.1.emb_layers.1.weight", "output_blocks.1.1.emb_layers.1.bias", "output_blocks.1.1.out_layers.0.weight", "output_blocks.1.1.out_layers.0.bias", "output_blocks.1.1.out_layers.3.weight", "output_blocks.1.1.out_layers.3.bias", "output_blocks.3.2.in_layers.0.weight", "output_blocks.3.2.in_layers.0.bias", "output_blocks.3.2.in_layers.2.weight", "output_blocks.3.2.in_layers.2.bias", "output_blocks.3.2.emb_layers.1.weight", "output_blocks.3.2.emb_layers.1.bias", "output_blocks.3.2.out_layers.0.weight", "output_blocks.3.2.out_layers.0.bias", "output_blocks.3.2.out_layers.3.weight", "output_blocks.3.2.out_layers.3.bias", "output_blocks.5.1.in_layers.0.weight", "output_blocks.5.1.in_layers.0.bias", "output_blocks.5.1.in_layers.2.weight", "output_blocks.5.1.in_layers.2.bias", "output_blocks.5.1.emb_layers.1.weight", "output_blocks.5.1.emb_layers.1.bias", "output_blocks.5.1.out_layers.0.weight", "output_blocks.5.1.out_layers.0.bias", "output_blocks.5.1.out_layers.3.weight", "output_blocks.5.1.out_layers.3.bias", "output_blocks.7.1.in_layers.0.weight", "output_blocks.7.1.in_layers.0.bias", "output_blocks.7.1.in_layers.2.weight", "output_blocks.7.1.in_layers.2.bias", "output_blocks.7.1.emb_layers.1.weight", "output_blocks.7.1.emb_layers.1.bias", "output_blocks.7.1.out_layers.0.weight", "output_blocks.7.1.out_layers.0.bias", "output_blocks.7.1.out_layers.3.weight", "output_blocks.7.1.out_layers.3.bias", "output_blocks.9.1.in_layers.0.weight", "output_blocks.9.1.in_layers.0.bias", "output_blocks.9.1.in_layers.2.weight", "output_blocks.9.1.in_layers.2.bias", "output_blocks.9.1.emb_layers.1.weight", "output_blocks.9.1.emb_layers.1.bias", "output_blocks.9.1.out_layers.0.weight", "output_blocks.9.1.out_layers.0.bias", "output_blocks.9.1.out_layers.3.weight", "output_blocks.9.1.out_layers.3.bias". Unexpected key(s) in state_dict: "input_blocks.2.0.op.weight", "input_blocks.2.0.op.bias", "input_blocks.4.0.op.weight", "input_blocks.4.0.op.bias",

I really hope the author can see this question. Your answer is very important to me.

Have you solved your problem yet? Would greatly appreciate it if you could get back to me and share your training code!