A library of immutable and grow-only Pandas-like DataFrames with a more explicit and consistent interface. StaticFrame is suitable for applications in data science, data engineering, finance, scientific computing, and related fields where reducing opportunities for error by prohibiting in-place mutation is critical.
While many interfaces are similar to Pandas, StaticFrame deviates from Pandas in many ways: all data is immutable, and all indices are unique; the full range of NumPy data types is preserved, and date-time indices use discrete NumPy types; hierarchical indices are seamlessly integrated; and uniform approaches to element, row, and column iteration and function application are provided. Core StaticFrame depends only on NumPy: Pandas is not a dependency.
A wide variety of table storage and representation formats are supported, including input from and output to CSV, TSV, JSON, MessagePack, Excel XLSX, SQLite, HDF5, NumPy, Pandas, Arrow, and Parquet; additionally, output to xarray, HTML, RST, Markdown, and LaTeX is supported, as well as HTML representations in Jupyter notebooks.
StaticFrame features a family of multi-table containers: the Bus is lazily loaded container of tables, the Batch is a deferred processor of tables, and the Quilt is a virtual concatenation of tables. All permit operating on large collections of tables with minimal memory overhead, as well as writing too and reading from zipped bundles of pickles, Parquet, or delimited files, as well as XLSX workbooks, SQLite, and HDF5.
Code: https://github.com/InvestmentSystems/static-frame
Docs: http://static-frame.readthedocs.io
Packages: https://pypi.org/project/static-frame
Benchmarks: https://investmentsystems.github.io/static-frame-benchmark
Context: Ten Reasons to Use StaticFrame instead of Pandas
The following example, executed in a low-memory environment (using prlimit
), shows how Pandas cannot re-label columns of a DataFrame or concatenate a DataFrame to itself without copying underlying data. By using immutable NumPy arrays, StaticFrame can perform these operations in the same low-memory environment. By reusing immutable arrays without copying, StaticFrame can achieve more efficient memory usage.
Unexpected type coercions can expose errors or degrade performance. StaticFrame's container display provides full visibility into the types in a Frame
, and provides a variety of ways to configure the presentation and color of those types.
Install StaticFrame via PIP:
pip install static-frame
Or, install StaticFrame via conda:
conda install -c conda-forge static-frame
To install full support of input and output routines via PIP:
pip install static-frame [extras]
Core StaticFrame requires the following:
- Python >= 3.6
- NumPy >= 1.16.5
- automap >= 0.4.8
For extended input and output, the following packages are required:
- pandas >= 0.23.4
- xlsxwriter >= 1.1.2
- openpyxl >= 3.0.0
- xarray >= 0.13.0
- tables >= 3.6.1
- pyarrow >= 0.16.0
StaticFrame provides numerous methods for loading and creating data, either as a 1D Series
or a 2D Frame
. All creation routines are exposed as alternate constructors on the desired class, such as Frame.from_records()
, Frame.from_csv()
or Frame.from_pandas()
.
Note
For a concise overview of all StaticFrame interfaces, see API Overview.
For example, we can load JSON data from a URL using Frame.from_json_url()
, and then use Frame.head()
to reduce the displayed output to just the first five rows. (Passing explicit dtypes
is only necessary on Windows.)
>>> import numpy as np
>>> import static_frame as sf
>>> frame = sf.Frame.from_json_url('https://jsonplaceholder.typicode.com/photos', dtypes=dict(albumId=np.int64, id=np.int64))
>>> frame.head()
<Frame>
<Index> albumId id title url thumbnailUrl <<U12>
<Index>
0 1 1 accusamus beatae ... https://via.place... https://via.place...
1 1 2 reprehenderit est... https://via.place... https://via.place...
2 1 3 officia porro iur... https://via.place... https://via.place...
3 1 4 culpa odio esse r... https://via.place... https://via.place...
4 1 5 natus nisi omnis ... https://via.place... https://via.place...
<int64> <int64> <int64> <<U86> <<U38> <<U38>
Note
The Pandas CSV reader out-performs the NumPy-based reader in StaticFrame: thus, for now, using Frame.from_pandas(pd.read_csv(fp))
is recommended for loading large CSV files.
For more information on Frame constructors, see Frame: Constructor.
As with a NumPy array, the Frame
exposes common attributes of shape and size.
>>> frame.shape
(5000, 5)
>>> frame.size
25000
>>> frame.nbytes
3320000
Unlike a NumPy array, a Frame stores heterogeneous types, where each column is a single type. StaticFrame preserves the full range of NumPy types, including fixed-size character strings. Character strings can be converted to Python objects or other types as needed with the Frame.astype
interface, which exposes a __getitem__
style interface for selecting columns to convert. As with all similar functions, a new Frame
is returned.
>>> frame.dtypes
<Series>
<Index>
albumId int64
id int64
title <U86
url <U38
thumbnailUrl <U38
<<U12> <object>
>>> frame.astype['title':](object).dtypes
<Series>
<Index>
albumId int64
id int64
title object
url object
thumbnailUrl object
<<U12> <object>
Utility functions common to Pandas users are available on Frame
and Series
, such as Series.unique()
, Series.isna()
, and Series.any()
.
>>> frame['albumId'].unique().tolist()
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100]
>>> frame['id'].isna().any()
False
Note
For more information on Frame utility functions, see Frame: Method.
StaticFrame interfaces for extracting data will be familiar to Pandas users, though with a number of interface refinements to remove redundancies and increase consistency. On a Frame
, __getitem__
is (exclusively) a column selector; loc
and iloc
are (with one argument) row selectors or (with two arguments) row and column selectors.
For example we can select a single column with __getitem__
:
>>> frame['albumId'].tail()
<Series: albumId>
<Index>
4995 100
4996 100
4997 100
4998 100
4999 100
<int64> <int64>
Consistent with other __getitem__
style selectors, a slice or a list can be used to select columns:
>>> frame['id':'title'].head()
<Frame>
<Index> id title <<U12>
<Index>
0 1 accusamus beatae ...
1 2 reprehenderit est...
2 3 officia porro iur...
3 4 culpa odio esse r...
4 5 natus nisi omnis ...
<int64> <int64> <<U86>
The loc
interface, with one argument, returns a Series
for the row found at the given index label.
>>> frame.loc[4]
<Series: 4>
<Index>
albumId 1
id 5
title natus nisi omnis ...
url https://via.place...
thumbnailUrl https://via.place...
<<U12> <object>
With two arguments, loc
can select both rows and columns at the same time:
>>> frame.loc[4:8, ['albumId', 'title']]
<Frame>
<Index> albumId title <<U12>
<Index>
4 1 natus nisi omnis ...
5 1 accusamus ea aliq...
6 1 officia delectus ...
7 1 aut porro officii...
8 1 qui eius qui aute...
<int64> <int64> <<U86>
Where the loc
interface uses index and column labels, the iloc
interface uses integer offsets from zero, just as if the Frame
were a NumPy array. For example, we can select the last row with -1
:
>>> frame.iloc[-1]
<Series: 4999>
<Index>
albumId 100
id 5000
title error quasi sunt ...
url https://via.place...
thumbnailUrl https://via.place...
<<U12> <object>
Or, using two arguments, we can select the first two columns of the last two rows:
>>> frame.iloc[-2:, 0:2]
<Frame>
<Index> albumId id <<U12>
<Index>
4998 100 4999
4999 100 5000
<int64> <int64> <int64>
Just as with Pandas, expressions can be used in __getitem__
, loc
, and iloc
statements to create more narrow selections. For example, we can select all "albumId" greater than or equal to 98.
>>> frame.loc[frame['albumId'] >= 98, ['albumId', 'title']].head()
<Frame>
<Index> albumId title <<U12>
<Index>
4850 98 aut aut nulla vol...
4851 98 ducimus neque del...
4852 98 fugit officiis su...
4853 98 pariatur temporib...
4854 98 qui inventore inc...
<int64> <int64> <<U86>
However, unlike Pandas, __getitem__
, loc
, and iloc
cannot be used for assignment or in-place mutation on a Frame
or Series
. Throughout StaticFrame, all underlying NumPy arrays, and all container attributes, are immutable. Making data and objects immutable reduces opportunities for coding errors and offers, in some situations, greater efficiency by avoiding defensive copies.
>>> frame.loc[4854, 'albumId']
98
>>> frame.loc[4854, 'albumId'] = 200
Traceback (most recent call last):
TypeError: 'InterfaceGetItem' object does not support item assignment
>>> frame.values[4854, 0] = 200
Traceback (most recent call last):
ValueError: assignment destination is read-only
Note
For more information on Frame selection interfaces, see Frame: Selector.
Instead of in-place assignment, an assign
interface object (similar to the Frame.astype
interface shown above) is provided to expose __getitem__
, loc
, and iloc
interfaces that, when called with an argument, return a new object with the desired changes. These interfaces expose the full range of expressive assignment-like idioms found in Pandas and NumPy. Arguments can be single values, or Series
and Frame
objects, where assignment will align on the Index.
>>> frame_new = frame.assign.loc[4854, 'albumId'](200)
>>> frame_new.loc[4854, 'albumId']
200
This pattern of specialized interfaces is used throughout StaticFrame, such as with the Frame.mask
and Frame.drop
interfaces. For example, Frame.mask
can be used to create a Boolean Frame
that sets rows to True if their "id" is even:
>>> frame.mask.loc[frame['id'] % 2 == 0].head()
<Frame>
<Index> albumId id title url thumbnailUrl <<U12>
<Index>
0 False False False False False
1 True True True True True
2 False False False False False
3 True True True True True
4 False False False False False
<int64> <bool> <bool> <bool> <bool> <bool>
Or, using the Frame.drop
interface, a new Frame
can be created by dropping rows with even "id" values and dropping URL columns specified in a list:
>>> frame.drop.loc[frame['id'] % 2 == 0, ['thumbnailUrl', 'url']].head()
<Frame>
<Index> albumId id title <<U12>
<Index>
0 1 1 accusamus beatae ...
2 1 3 officia porro iur...
4 1 5 natus nisi omnis ...
6 1 7 officia delectus ...
8 1 9 qui eius qui aute...
<int64> <int64> <int64> <<U86>
Iteration of rows, columns, and elements, as well as function application on those values, is unified under a family of generator interfaces. These interfaces are distinguished by the form of the data iterated (Series
, namedtuple
, or array
) and whether key-value pairs (e.g., Frame.iter_series_items()
) or just values (e.g., Frame.iter_series()
) are yielded. For example, we can iterate over each row of a Frame
and yield a corresponding Series
:
>>> next(iter(frame.iter_series(axis=1)))
<Series: 0>
<Index>
albumId 1
id 1
title accusamus beatae ...
url https://via.place...
thumbnailUrl https://via.place...
<<U12> <object>
Or we can iterate over rows as named tuples, applying a function that matches a substring of the "title" or returns None, then drop those None records:
>>> frame.iter_tuple(axis=1).apply(lambda r: r.title if 'voluptatem' in r.title else None).dropna().head()
<Series>
<Index>
19 assumenda volupta...
27 non neque eligend...
29 odio enim volupta...
31 ad enim dignissim...
40 in voluptatem dol...
<int64> <object>
Element iteration and function application works the same way as for rows or columns (though without an axis
argument). For example, here each URL is processed with the same string transformation function:
>>> frame[['thumbnailUrl', 'url']].iter_element().apply(lambda c: c.replace('https://', '')).iloc[-4:]
<Frame>
<Index> thumbnailUrl url <<U12>
<Index>
4996 via.placeholder.c... via.placeholder.c...
4997 via.placeholder.c... via.placeholder.c...
4998 via.placeholder.c... via.placeholder.c...
4999 via.placeholder.c... via.placeholder.c...
<int64> <<U30> <<U30>
Group-by functionality is exposed in a similar manner with Frame.iter_group_items()
and Frame.iter_group()
.
>>> next(iter(frame.iter_group('albumId', axis=0))).shape
(50, 5)
Function application to a group Frame
can be used to produce a Series
indexed by the group label. For example, a Series
, indexed by "albumId", can be produced to show the number of unique titles found per album.
>>> frame.iter_group('albumId', axis=0).apply(lambda g: len(g['title'].unique()), dtype=np.int64).head()
<Series>
<Index>
1 50
2 50
3 50
4 50
5 50
<int64> <int64>
Note
For more information on Frame iterators and tools for function application, see Frame: Iterator.
If performing calculations on a Frame
that result in a Series
with a compatible Index
, a grow-only FrameGO
can be used to add Series
as new columns. This limited form of mutation, i.e., only the addition of columns, provides a convenient compromise between mutability and immutability. (Underlying NumPy array data always remains immutable.)
A FrameGO
can be efficiently created from a Frame
, as underling NumPy arrays do not have to be copied:
>>> frame_go = frame.to_frame_go()
We can obtain a track number within each album, assuming the records are sorted, by creating the following generator expression pipe-line. Using a Frame
grouped by "albumId", zip
together as pairs the Frame.index
and a contiguous integer sequence via range()
; chain
all of those iterables, and then pass the resulting generator to Series.from_items()
. (As much as possible, StaticFrame supports generators as arguments wherever an ordered sequence is expected.)
>>> from itertools import chain
>>> index_to_track = chain.from_iterable(zip(g.index, range(len(g))) for g in frame_go.iter_group('albumId'))
>>> frame_go['track'] = sf.Series.from_items(index_to_track, dtype=np.int64) + 1
>>> frame_go.iloc[45:55]
<FrameGO>
<IndexGO> albumId id title url thumbnailUrl track <<U12>
<Index>
45 1 46 quidem maiores in... https://via.place... https://via.place... 46
46 1 47 et soluta est https://via.place... https://via.place... 47
47 1 48 ut esse id https://via.place... https://via.place... 48
48 1 49 quasi quae est mo... https://via.place... https://via.place... 49
49 1 50 et inventore quae... https://via.place... https://via.place... 50
50 2 51 non sunt voluptat... https://via.place... https://via.place... 1
51 2 52 eveniet pariatur ... https://via.place... https://via.place... 2
52 2 53 soluta et harum a... https://via.place... https://via.place... 3
53 2 54 ut ex quibusdam d... https://via.place... https://via.place... 4
54 2 55 voluptatem conseq... https://via.place... https://via.place... 5
<int64> <int64> <int64> <<U86> <<U38> <<U38> <int64>
Unlike with Pandas, StaticFrame Index
objects always enforce uniqueness (there is no "verify_integrity" option: integrity is never optional). Thus, an index can never be set from non-unique data:
>>> frame_go.set_index('albumId')
Traceback (most recent call last):
static_frame.core.exception.ErrorInitIndexNonUnique: labels (5000) have non-unique values (100)
For a data set such as the one used in this example, a hierarchical index, by "albumId" and "track", is practical. StaticFrame implements hierarchical indices as IndexHierarchy
objects. The Frame.set_index_hierarchy()
method, given columns in a Frame
, can be used to create a hierarchical index:
>>> frame_h = frame_go.set_index_hierarchy(['albumId', 'track'], drop=True)
>>> frame_h.head()
<FrameGO>
<IndexGO> id title url thumbnailUrl <<U12>
<IndexHierarchy: ('albumId', 'tra...
1 1 1 accusamus beatae ... https://via.place... https://via.place...
1 2 2 reprehenderit est... https://via.place... https://via.place...
1 3 3 officia porro iur... https://via.place... https://via.place...
1 4 4 culpa odio esse r... https://via.place... https://via.place...
1 5 5 natus nisi omnis ... https://via.place... https://via.place...
<int64> <int64> <int64> <<U86> <<U38> <<U38>
Hierarchical indices permit specifying selectors, per axis, at each hierarchical level. To distinguish hierarchical levels from axis arguments in a loc
expression, the HLoc
wrapper, exposing a __getitem__
interface, can be used. For example, we can select, from all albums, the second and fifth track, and then only the "title" and "url" columns.
>>> frame_h.loc[sf.HLoc[:, [2,5]], ['title', 'url']].head()
<FrameGO>
<IndexGO> title url <<U12>
<IndexHierarchy: ('albumId', 'tra...
1 2 reprehenderit est... https://via.place...
1 5 natus nisi omnis ... https://via.place...
2 2 eveniet pariatur ... https://via.place...
2 5 voluptatem conseq... https://via.place...
3 2 eaque iste corpor... https://via.place...
<int64> <int64> <<U86> <<U38>
Just as a hierarchical selection can reside in a loc
expression with an HLoc
wrapper, an integer index selection can reside in a loc
expression with an ILoc
wrapper. For example, the previous row selection is combined with the selection of the last column:
>>> frame_h.loc[sf.HLoc[:, [2,5]], sf.ILoc[-1]].head()
<Series: thumbnailUrl>
<IndexHierarchy: ('albumId', 'tra...
1 2 https://via.place...
1 5 https://via.place...
2 2 https://via.place...
2 5 https://via.place...
3 2 https://via.place...
<int64> <int64> <<U38>
Note
For more information on IndexHierarchy, see Index Hierarchy.
While StaticFrame offers many of the features of Pandas and similar data structures, exporting directly to NumPy arrays (via the .values
attribute) or to Pandas is supported for functionality not found in StaticFrame or compatibility with other libraries. For example, a Frame
can export to a Pandas DataFrame
with Frame.to_pandas()
.
>>> df = frame_go.to_pandas()