How to finetune Osprey on RefCOCOg?
Glupayy opened this issue · 1 comments
Glupayy commented
Hi! Thanks for the great work!
Could you share any configs on fine-tuning Osprey on RefCOCOg dataset? I am trying to follow your work and reproduce the results on it, what's the starting checkpoint and the prompt template? It would be very appreciated if any fine-tuning config could be shared.
Thank you!
CircleRadon commented
Hi, @Glupapa
The starting checkpoint is our final model Osprey-7b
, and the prompt template is the same as RefCOCO as in https://github.com/CircleRadon/Osprey/blob/ca9f26dbd9a0907d8ff686588a394fa897b60828/osprey/datasets/stage2_data.py#L256C26-L262C1
The config is as follows,
#!/bin/bash
export PYTHONPATH=`pwd`:$PYTHONPATH
deepspeed --include localhost:0,1,2,3 llava/train/train_mem.py \
--deepspeed ./scripts/zero2.json \
--model_name_or_path ./Osprey-7b \
--dataset_config ./osprey/configs/finetune.json \
--version v1 \
--vision_tower laion2b_s29b_b131k_ft_soup.bin \
--mm_projector_type mlp2x_gelu \
--mm_vision_select_layer -2 \
--mm_use_im_start_end False \
--mm_use_im_patch_token False \
--image_aspect_ratio pad \
--group_by_modality_length True \
--bf16 True \
--output_dir './exp/finetune' \
--num_train_epochs 1 \
--per_device_train_batch_size 1\
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 1 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 3000 \
--save_total_limit 1 \
--learning_rate 5e-6 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--tf32 True \
--model_max_length 2048 \
--gradient_checkpointing True \
--dataloader_num_workers 4 \
--lazy_preprocess True \
--report_to "none" \
--group_by_modality_length False