ControlxFreak/XmasLootBox

Move experiments to snippets (or whatever Github's equivalent is)

Closed this issue · 5 comments

Move experiments to snippets (or whatever Github's equivalent is)

drop_rates.py

# %%
"""
Rarity Level Statistics
=======================
The probability mass function (PMF) describing their rarity follows a sliding Poisson distribution.
Each week, the mean of the Poisson PMF will change from [1, 2, 6, 16].
The values of each rarity level remain fixed at 2 * [1,2,3,4,5,6,7].
"""
import os
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import poisson

# Initialization
labels = ["Common", "Uncommon", "Rare", "Legendary", "Mythical", "N-F-Tacular", "Christmas Miracle"]
num_labels = len(labels)
ids = np.arange(1, num_labels + 1)
values = 2*ids
mus = [1, 2, 6, 12, 16]

# Compute the PMFs everyday
figi, axi = plt.subplots(nrows=5, ncols=1, sharex=True, figsize=(10, 15))
ipmfs = []
for wi, mu in enumerate(mus):
    # Grab the pmf for these IDs
    ipmf = poisson.pmf(ids, mu=mu)
    # Normalize to maintain distribution
    ipmf /= np.sum(ipmf)
    ipmfs.append(ipmf)
    # Print the values
    print(f"### Week {wi} Probabilities")
    print("| Level | Rarity (%) |")
    print("| ----------- | ----------- |")
    for l, p in zip(labels, ipmf):
        print(f"| {l} \t\t | {100 * p:.3f} % |")

    # Plot
    axi[wi].barh(labels, [100*p for p in ipmf])
    axi[wi].set_title(f"Week {wi + 1} Rarity Distribution")
    axi[wi].set_xlabel("Probability (%)")
    axi[wi].invert_yaxis()

os.makedirs("../docs/", exist_ok=True)
plt.tight_layout()
figi.savefig("../docs/rarity_histogram.png")

# %%
# Compute the probability that everyone gets at least 1 of each NFT rarity
probs = np.ones(num_labels)
for wi, ipmf in enumerate(ipmfs):
    # Compute the probability
    for i in range(num_labels):
        # Note there are 7 attempts per week
        probs[i] *= (1 - ipmf[i]) ** 7

# The probability of NOT getting it is 1 - probs
probs = 1 - probs
for l, p in zip(labels, probs):
    print(f"P(|{l}| > 1) = {100*p:.3f}")

# %%

estimate_gasfee.py

"""

From Etherscan, it appears that executing "mint4NFTs()" costs about 450k gas (averaged over 5 attempts).



"""


from requests import Session, Request, Response
import dotenv
import os
import json

from web3 import Web3

# Initialize the environment variables
dotenv.load_dotenv()
ALCHEMY_TOKEN = os.getenv("ALCHEMY_TOKEN")
PINATA_API_KEY = os.getenv("PINATA_API_KEY")
PINATA_SECRET_KEY = os.getenv("PINATA_SECRET_KEY")
CONTRACT_ADDRESS = os.getenv("CONTRACT_ADDRESS")
OWNER_ADDRESS = os.getenv("OWNER_ADDRESS")
OWNER_PRIVATE_KEY = os.getenv("OWNER_PRIVATE_KEY")

# Prepare the IPFS url, payload and header
ipfs_url = "https://api.pinata.cloud/pinning/pinFileToIPFS"
ipfs_headers = {
    'pinata_api_key': PINATA_API_KEY,
    'pinata_secret_api_key': PINATA_SECRET_KEY
}

# Instantiate the web3 client once since this is time-consuming
ALCHEMY_URL = f"https://eth-goerli.g.alchemy.com/v2/{ALCHEMY_TOKEN}"
w3 = Web3(Web3.HTTPProvider(ALCHEMY_URL))

# Create the account object
account = w3.eth.account.from_key(OWNER_PRIVATE_KEY)

# Load the ABI once into memory
with open("contracts/XmasLootBox_abi.json", "r") as f:
    CONTRACT_ABI=json.load(f)

# Instantiate the contract class
contract = w3.eth.contract(address=w3.toChecksumAddress(CONTRACT_ADDRESS), abi=CONTRACT_ABI)

# Get the the current nonce of the owner
nonce = w3.eth.get_transaction_count(OWNER_ADDRESS)

# Build the transaction
txn = contract.functions.mint4NFTs(
    OWNER_ADDRESS, 
    ["ipfs://QmPSe6THkLiWXC8oz2Z8KFJX4AkKwknKLZTkqAMYHQCVSV/",
     "ipfs://QmPSe6THkLiWXC8oz2Z8KFJX4AkKwknKLZTkqAMYHQCVSV/",
     "ipfs://QmPSe6THkLiWXC8oz2Z8KFJX4AkKwknKLZTkqAMYHQCVSV/",
     "ipfs://QmPSe6THkLiWXC8oz2Z8KFJX4AkKwknKLZTkqAMYHQCVSV/"]
    ).build_transaction({
    'from': account.address,
    'nonce': nonce,
    'maxPriorityFeePerGas': w3.toWei(10, 'gwei'),
    'maxFeePerGas': w3.toWei(200, 'gwei'),
})

print("========================")
print("Transaction: ")
print(txn)

# Sign and send the transaction
signed_txn = w3.eth.account.sign_transaction(txn, account.key)
txn_hash = w3.eth.send_raw_transaction(signed_txn.rawTransaction)
w3.eth.waitForTransactionReceipt(txn_hash)

print("========================")
print("Signed Transaction: ")
print(txn)

generate.py

# %%
from copy import deepcopy
import json
import os
from dotenv import load_dotenv
from src.generators import generate_dalle_description, generate_erc721_metadata, generate_dalle_art
from src.rarity import sample_rarity_label_uniform, sample_attributes, sample_frame
from src.artists import add_frame
from dalle2 import Dalle2
from PIL import Image

print("DO NOT RUN THIS.")
print("THIS IS JUST A TEST SCRIPT FOR DRAINING MY ACCOUNT OF UNUSED VALUES")
exit()

load_dotenv()
OPENAI_TOKEN = os.getenv("OPENAI_TOKEN")
FRAME_DIR = "assets/frames/"
OUT_DIR = "out/"

# Define the number of NFTs that you want to generate
N = 3

# Construct the dalle-2 object
dalle = Dalle2(OPENAI_TOKEN)

# Get the next NFT ID
with open('next_id', 'r', encoding="utf8") as f:
    next_nft_id = int(f.readline())

# Generate some NFTs
for _ in range(N):
    print("==========================================")
    print("------------------------------------------")
    print("------------------------------------------")
    print("==========================================")

    # Sample a rarity level
    rarity_label = sample_rarity_label_uniform()
    print(f"Sampled Rarity Level: {rarity_label}")

    # Sample the atributes
    attributes = sample_attributes(rarity_label)

    # Generate the description string and query Dalle-2
    description = generate_dalle_description(attributes)
    print(f"Description: {description}")

    # Generate the dalle images
    images = generate_dalle_art(dalle, description)

    # Sample the frame
    frame_name = sample_frame(rarity_label)
    print(f"Frame Name: {frame_name}")

    if frame_name is None:
        nft_imgs = [image for image in images]
    else:
        # Add the frame to each image
        frame_path = os.path.join(FRAME_DIR, f"{frame_name}.gif")
        nft_imgs = [
            add_frame(image, frame_path) for image in images
        ]

    # Generate the ERC721-compliant metadata json
    metadata = generate_erc721_metadata(attributes)

    # Save the images and metadata to disk
    for img, nft_img in zip(images, nft_imgs):
        print(f"Saving NFT: {next_nft_id}...")

        # First, save the image
        img.save(os.path.join(OUT_DIR, f"{next_nft_id}_img.png"))

        # Second, save the nft
        if frame_name is None:
            nft_img.save(os.path.join(OUT_DIR, f"{next_nft_id}.png"))
        else:
            nft_img[0].save(os.path.join(OUT_DIR, f"{next_nft_id}.gif"),
                save_all = True, append_images = nft_img[1:],
                optimize = False, duration = 10, loop=0)

        # Lastly, save the metadata
        metadata_cpy = deepcopy(metadata)
        metadata_cpy["name"] = metadata_cpy["name"].format(next_nft_id)
        metadata_cpy["description"] = description

        with open(os.path.join(OUT_DIR, f"{next_nft_id}.json"), "w", encoding="utf8") as outfile:
            json.dump(metadata_cpy, outfile)

        next_nft_id+=1

    # Update the ID
    with open('next_id', 'w', encoding="utf8") as f:
        f.write(f"{next_nft_id}")

# %%

test_rarity_border.py

# %%
from os import makedirs
from PIL import Image

# Load the example image
# frame_name = "neon_frame"
# frame_name = "cat_crime_graffiti"
# frame_name = "glitch_unstable"
# frame_name = "speedlines"
# frame_name = "glitch_wave"
# frame_name = "darkage_red"
frame_name = "rain_of_gold"
# frame_name = "christmas_lights"

frame_gif = Image.open(f"../assets/frames/{frame_name}.gif")

image = Image.open("../assets/example/1.png")
width, height = image.size

# Create a black background image
if frame_name.lower() in ["speedlines", "rain_of_gold"]:
    OFFSET = 0
else:
    OFFSET = 275

base_layer = Image.new(mode="RGB", size=(width + OFFSET, height + OFFSET))
# Paste the target image on the base layer
base_layer.paste(image, (OFFSET//2, OFFSET//2))

# Break apart the frame gif, paste it ontop of the base image, and reconstruct it in a list
gif_imgs = []
try:
    while 1:
        # Get the next frame, resize it, and add an alpha layer
        frame_gif.seek(frame_gif.tell()+1)
        frame_img = frame_gif.resize((width + OFFSET, height + OFFSET))
        frame_img = frame_img.convert('RGBA')

        # Copy the base layer image
        temp_img = base_layer.copy()
        # Then the frame on top
        temp_img.paste(frame_img, (0, 0), frame_img)

        # Add this frame to the output list
        gif_imgs.append(temp_img.copy())
except EOFError:
    pass # end of sequence

makedirs("output/", exist_ok=True)
gif_imgs[0].save('output/example.gif',
               save_all = True, append_images = gif_imgs[1:],
               optimize = False, duration = 10, loop=0)

# %%

just dumping them here... If I care at all, I can just go back in the git history..