CurryaNa's Stars
Jaeyun-Song/TAM
TAM: Topology-Aware Margin Loss for Class-Imbalanced Node Classification
SukwonYun/LTE4G
The official source code for "LTE4G: Long-Tail Experts for Graph Neural Networks" paper, accepted at CIKM 2022.
datawhalechina/team-learning-nlp
主要存储Datawhale组队学习中“自然语言处理”方向的资料。
TianxiangZhao/GraphSmote
Pytorch implementation of paper 'GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks' to appear on WSDM2021
JoonHyung-Park/GraphENS
GraphENS: Neighbor-Aware Ego Network Synthesis for Class-Imbalanced Node Classification (ICLR'22)
CastalZhou/graphsr
tjhznb666/Predicting-future-customer-credit-risk-based-on-machine-learning-algorithm
利用python对3000个数据利用机器学习算法建立模型,并预测未来客户信用风险。处理数据不均衡问题时采用了SMOTE过采样以及随机过采样技术;通过相关性分析进行特征选择;建模过程中用到了Logistic回归、SVM、随机森林、GBDT四种模型,并通过网格搜索法确定最优参数;利用准确率、KS值、ROC曲线、AUC值以及lift曲线进行模型评估。
ZhiningLiu1998/awesome-imbalanced-learning
😎 Everything about class-imbalanced/long-tail learning: papers, codes, frameworks, and libraries | 有关类别不平衡/长尾学习的一切:论文、代码、框架与库