Erin-Rooney/WyoP

correlation matrices

Closed this issue · 0 comments

@kaizadp

This is the code that I'm worried about. I am not sure if it gave me reliable correlation matrices.

This is the page I used. I'm having trouble figuring out if I did a pearson correlation. Or maybe I didn't complete the correlation matrix?
http://www.sthda.com/english/wiki/correlation-matrix-a-quick-start-guide-to-analyze-format-and-visualize-a-correlation-matrix-using-r-software

#correlation matrix for all cover crops (no fallow) no caco3/inorganic c
corr_data =
pall2 %>%
filter(ctrt != 'Fallow') %>%
select(cbio, wbio, pbic_percbio, amac_percbio, unavp_percbio,
porg_percbio, amm_percbio, nit_percbio,
pmn_percbio, pmc_percbio) %>%
na.omit() %>%
force()
matrix1 <- rcorr(as.matrix(corr_data))
matrix1
# Extract the correlation coefficients
corrpercbio_r <- matrix1$r
# Extract p-values
corrpercbio_p <- matrix1$P
write.csv(corrpercbio_r, "corrpercbio_r.csv", row.names = TRUE)
write.csv(corrpercbio_p, "corrpercbio_p.csv", row.names = TRUE)
#correlation matrix for all cover crops with caco3/inorganic c (time1 only)
corr_data2 =
pall2 %>%
filter(time == '1') %>%
select(cbio, wbio, pbic_percbio, amac_percbio, unavp_percbio,
porg_percbio, inorgcarbon_percbio, amm_percbio, nit_percbio,
pmn_percbio, pmc_percbio) %>%
force()
matrix2 <- rcorr(as.matrix(corr_data2))
matrix2
##rcorr(matrix2, type = c("pearson"))
# Extract the correlation coefficients
corrpercbiocaco3_r <- matrix2$r
# Extract p-values
corrpercbiocaco3_p <- matrix2$P
write.csv(corrpercbiocaco3_r, "corrpercbiocaco3_r.csv", row.names = TRUE)
write.csv(corrpercbiocaco3_p, "corrpercbiocaco3_p.csv", row.names = TRUE)
#correlation matrix no standardization, no caco3
corr_data3 =
pall2 %>%
#filter(time == '1') %>%
select(cbio, wbio, pbic, amac, unavp,
porg, amm, nit,
pmn, pmc) %>%
force()
matrix3 <- rcorr(as.matrix(corr_data3))
matrix3
# Extract the correlation coefficients
corr_r <- matrix3$r
# Extract p-values
corr_p <- matrix3$P
write.csv(corr_r, "corr_r.csv", row.names = TRUE)
write.csv(corr_p, "corr_p.csv", row.names = TRUE)