how to train nuscenes dataset
k-lam opened this issue · 3 comments
I have downloaded the nuscenes mini dataset, and prepare it according to the README.md.
I get the follow exception, when I run python run.py ./configs/non_ar_transformer_nuscenes.py. Should I provide the file path to data to run.py? And how?
File "run.py", line 73, in main
trainer.fit(model)
File "/usr/local/lib/python3.6/dist-packages/pytorch_lightning/trainer/states.py", line 48, in wrapped_fn
result = fn(self, *args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/pytorch_lightning/trainer/trainer.py", line 1073, in fit
results = self.accelerator_backend.train(model)
File "/usr/local/lib/python3.6/dist-packages/pytorch_lightning/accelerators/gpu_backend.py", line 51, in train
results = self.trainer.run_pretrain_routine(model)
File "/usr/local/lib/python3.6/dist-packages/pytorch_lightning/trainer/trainer.py", line 1224, in run_pretrain_routine
self._run_sanity_check(ref_model, model)
File "/usr/local/lib/python3.6/dist-packages/pytorch_lightning/trainer/trainer.py", line 1249, in _run_sanity_check
self.reset_val_dataloader(ref_model)
File "/usr/local/lib/python3.6/dist-packages/pytorch_lightning/trainer/data_loading.py", line 337, in reset_val_dataloader
self.num_val_batches, self.val_dataloaders = self._reset_eval_dataloader(model, 'val')
File "/usr/local/lib/python3.6/dist-packages/pytorch_lightning/trainer/data_loading.py", line 299, in _reset_eval_dataloader
num_batches = len(dataloader) if _has_len(dataloader) else float('inf')
File "/usr/local/lib/python3.6/dist-packages/pytorch_lightning/trainer/data_loading.py", line 70, in _has_len
raise ValueError('Dataloader
returned 0 length.'
ValueError:Dataloader
returned 0 length. Please make sure that your Dataloader at least returns 1 batch
I have fixed it. We should change the dir path in line 82 of nuscenes.py file. The path must be the $SAVE_ROOT, where I run the script:
python scripts/nuscenes_preprocess.py $YOUR_NUSCENES_DATA_ROOT $SAVE_ROOT -v $NUSCENES_VERSION
Hello, @k-lam. I have the same problem.
did you mean replace the "{self.root_dir}/annotations" to "SAVE_ROOT"? But after that, the problem still exists.
The contents of my SAVE_ROOT as follows:
And After replacing the "{self.root_dir}/annotations" to "SAVE_ROOT/frames_ann", the problem also exists.
Could you tell me how you solved it in detial, please? Thank you very much.