A tool for reconstructing Transfer Entropy-based causal gene NETwork from pseudo-time ordered single cell transcriptomic data
Nucleic Acids Research, gkaa1014, https://doi.org/10.1093/nar/gkaa1014
python3
openmpi (>4.0)
JPype
./TENET [expression_file_name] [number_of_threads] [trajectory_file_name] [cell_select_file_name] [history_length]
./TENET expression_data.csv 10 trajectory.txt cell_select.txt 1
(1) expression_file - a csv file with N cells in the rows and M genes in the columns (same format with wishbone pseudotime package).
GENE_1 GENE_2 GENE_3 ... GENE_M
CELL_1
CELL_2
CELL_3
.
.
.
CELL_N
(2) number_of_threads - You can use this multi-threads option. This will take lots of memory depending on the squared number of genes * the number of cells. If the program fail, you need to reduce this.
(3) trajectory_file - a text file of pseudotime data with N time points in the same order as the N cells of the expression file.
0.098
0.040
0.023
.
.
.
0.565
(4) cell_select_file - a text file of cell selection data with N Boolean (1 for select and 0 for non-select) data in the same order as the N cells of the expression file.
1
1
0
.
.
.
1
(5) history_length - the length of history. In the benchmark data TENET provides best result when the length of history set to 1.
TE_result_matrix.txt - TEij, M genes x M genes matrix representing the causal relationship from GENEi to GENEj.
TE GENE_1 GENE_2 GENE_3 ... GENE_M
GENE_1 0 0.05 0.02 ... 0.004
GENE_2 0.01 0 0.04 ... 0.12
GENE_3 0.003 0.003 0 ... 0.001
.
.
.
GENE_M 0.34 0.012 0.032 ... 0
./TENET4PAGAhdf5 [hdf5_file_name] [number_of_threads] [history_length]
./TENET4PAGAhdf5 Data.Tuck/Tuck_PAGA510genes.h5ad 10 1
3. Run TENET from TF to target using expression data in a csv file and pseudotime result in a text file
./TENET_TF [expression_file_name] [number_of_threads] [trajectory_file_name] [cell_select_file_name] [history_length] [species]
./TENET_TF expression_data.csv 10 trajectory.txt cell_select.txt 1 mouse
TE_result_matrix.txt
python makeGRN.py [cutoff for FDR]
python makeGRNsameNumberOfLinks.py [number of links]
python makeGRNbyTF.py [species] [cutoff for FDR]
python makeGRNbyTFsameNumberOfLinks.py [species] [number of links]
** Note that "TE_result_matrix.txt" should be in the same folder.
python makeGRN.py 0.01
python makeGRNsameNumberOfLinks.py 1000
python makeGRNbyTF.py human 0.01
python makeGRNbyTFsameNumberOfLinks.py human 1000
TE_result_matrix.fdr0.01.sif
TE_result_matrix.NumberOfLinks1000.sif
TE_result_matrix.byGRN.fdr0.01.sif
TE_result_matrix.byGRN.NumberOflinks1000.sif
[cutoff for fdr] - A cutoff value for FDR by z-test
[number of links] - The number of links of the GRN
[species] - User can choose human or mouse
python trim_indirect.py [name of GRN] [cutoff]
python trim_indirect.py TE_result_matrix.fdr0.01.sif 0
TE_result_matrix.fdr0.01.trimIndirect0.0.sif
[cutoff] - A cutoff value for trimming indirect edges. Recommended range is -0.1 to 0.1
python countOutdegree.py [name of GRN]
python countOutdegree.py TE_result_matrix.fdr0.01.sif
TE_result_matrix.fdr0.01.sif.outdegree.txt