This is JupyterLab's Dockerfiles, create and deploy them to my Docker Hub.
Check the full list of tags for the available images.
Base OS is Ubuntu and use the Miniconda3 environment.
- Ubuntu
- 16.04
- 18.04
- GPU
- CUDA 10.1
- Miniconda3
- Python 3.7.3
- numpy
- pandas
- matplotlib
- pillow
- Python 3.7.3
- Machine Learning (ml)
- scipy
- scikit-learn
- nltk
- opencv-python
- tensorflow==1.14.0
- pytorch==1.1.0
- C++
- xeus-cling
latest
: same asxenial-py3
latest-gpu
: same asxenial-gpu-py3
xenial
: Ubuntu16.04bionic
: Ubuntu18.04-py3
: Python 3.7.3-gpu
: enable to use CUDA-ml
: pre-installed machine learning packages-cpp
: enable to use C++ environment from xeus-cling which is the jupyter kernel for the C++
$ docker run -it --rm -p 8888:8888 gzupark/jupyterlab
Run a JupyterLab server, navigate to localhost:8888
in your browser. Then, type default jupyter password which is "jupyterlab"
, you can see the guide if you want to change it through tutorial_change_passwd.ipynb
in the workspace.
Start a machine learning packages and C++ environment:
$ docker run -it --rm -p 8888:8888 gzupark/jupyerlab:py3-ml-cpp
Want to mount with your local machine:
$ docker run -it --rm -v $(realpath ~/project):/workspace -p 8888:8888 gzupark/jupyterlab
Want to use GPU version:
$ docker run -it --rm --runtime=nvidia -p 8888:8888 gzupark/jupyterlab:latest-gpu