HendrikStrobelt/detecting-fake-text

ERROR: Model name 'bert-base-cased' was not found in model...

Opened this issue · 0 comments

Attempting to run a test of the model, receive the following error:

Model name 'bert-base-cased' was not found in model name list (bert-base-uncased, bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, bert-base-multilingual-cased, bert-base-chinese). We assumed 'https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz' was a path or url but couldn't find any file associated to this path or url.
Traceback (most recent call last):
  File "C:\Users\User\Desktop\test.py", line 344, in <module>
    main()
  File "C:\Users\User\Desktop\test.py", line 320, in main
    lm = BERTLM()
  File "C:\Users\User\Desktop\test.py", line 193, in __init__
    self.model.to(self.device)
AttributeError: 'NoneType' object has no attribute 'to'

Have attempted to run on two different networks in case it was a network issue, but appears it is not.

Code for reference (api.py) :

`

import numpy as np
import torch
import time

from pytorch_pretrained_bert import (GPT2LMHeadModel, GPT2Tokenizer,
                                     BertTokenizer, BertForMaskedLM)

class AbstractLanguageChecker():
    """
    Abstract Class that defines the Backend API of GLTR.

    To extend the GLTR interface, you need to inherit this and
    fill in the defined functions.
    """

    def __init__(self):
        '''
        In the subclass, you need to load all necessary components
        for the other functions.
        Typically, this will comprise a tokenizer and a model.
        '''
        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")

    def check_probabilities(self, in_text, topk=40):
        '''
        Function that GLTR interacts with to check the probabilities of words

        Params:
        - in_text: str -- The text that you want to check
        - topk: int -- Your desired truncation of the head of the distribution

        Output:
        - payload: dict -- The wrapper for results in this function, described below

        Payload values
        ==============
        bpe_strings: list of str -- Each individual token in the text
        real_topk: list of tuples -- (ranking, prob) of each token
        pred_topk: list of list of tuple -- (word, prob) for all topk
        '''
        raise NotImplementedError

    def postprocess(self, token):
        """
        clean up the tokens from any special chars and encode
        leading space by UTF-8 code '\u0120', linebreak with UTF-8 code 266 '\u010A'
        :param token:  str -- raw token text
        :return: str -- cleaned and re-encoded token text
        """
        raise NotImplementedError


def top_k_logits(logits, k):
    '''
    Filters logits to only the top k choices
    from https://github.com/huggingface/pytorch-pretrained-BERT/blob/master/examples/run_gpt2.py
    '''
    if k == 0:
        return logits
    values, _ = torch.topk(logits, k)
    min_values = values[:, -1]
    return torch.where(logits < min_values,
                       torch.ones_like(logits, dtype=logits.dtype) * -1e10,
                       logits)


class LM(AbstractLanguageChecker):
    def __init__(self, model_name_or_path="gpt2"):
        super(LM, self).__init__()
        self.enc = GPT2Tokenizer.from_pretrained(model_name_or_path)
        self.model = GPT2LMHeadModel.from_pretrained(model_name_or_path)
        self.model.to(self.device)
        self.model.eval()
        self.start_token = '<|endoftext|>'
        print("Loaded GPT-2 model!")

    def check_probabilities(self, in_text, topk=40):
        # Process input
        start_t = torch.full((1, 1),
                             self.enc.encoder[self.start_token],
                             device=self.device,
                             dtype=torch.long)
        context = self.enc.encode(in_text)
        context = torch.tensor(context,
                               device=self.device,
                               dtype=torch.long).unsqueeze(0)
        context = torch.cat([start_t, context], dim=1)
        # Forward through the model
        logits, _ = self.model(context)

        # construct target and pred
        yhat = torch.softmax(logits[0, :-1], dim=-1)
        y = context[0, 1:]
        # Sort the predictions for each timestep
        sorted_preds = np.argsort(-yhat.data.cpu().numpy())
        # [(pos, prob), ...]
        real_topk_pos = list(
            [int(np.where(sorted_preds[i] == y[i].item())[0][0])
             for i in range(y.shape[0])])
        real_topk_probs = yhat[np.arange(
            0, y.shape[0], 1), y].data.cpu().numpy().tolist()
        real_topk_probs = list(map(lambda x: round(x, 5), real_topk_probs))

        real_topk = list(zip(real_topk_pos, real_topk_probs))
        # [str, str, ...]
        bpe_strings = [self.enc.decoder[s.item()] for s in context[0]]

        bpe_strings = [self.postprocess(s) for s in bpe_strings]

        # [[(pos, prob), ...], [(pos, prob), ..], ...]
        pred_topk = [
            list(zip([self.enc.decoder[p] for p in sorted_preds[i][:topk]],
                     list(map(lambda x: round(x, 5),
                              yhat[i][sorted_preds[i][
                                      :topk]].data.cpu().numpy().tolist()))))
            for i in range(y.shape[0])]

        pred_topk = [[(self.postprocess(t[0]), t[1]) for t in pred] for pred in pred_topk]
        payload = {'bpe_strings': bpe_strings,
                   'real_topk': real_topk,
                   'pred_topk': pred_topk}
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

        return payload

    def sample_unconditional(self, length=100, topk=5, temperature=1.0):
        '''
        Sample `length` words from the model.
        Code strongly inspired by
        https://github.com/huggingface/pytorch-pretrained-BERT/blob/master/examples/run_gpt2.py

        '''
        context = torch.full((1, 1),
                             self.enc.encoder[self.start_token],
                             device=self.device,
                             dtype=torch.long)
        prev = context
        output = context
        past = None
        # Forward through the model
        with torch.no_grad():
            for i in range(length):
                logits, past = self.model(prev, past=past)
                logits = logits[:, -1, :] / temperature
                # Filter predictions to topk and softmax
                probs = torch.softmax(top_k_logits(logits, k=topk),
                                      dim=-1)
                # Sample
                prev = torch.multinomial(probs, num_samples=1)
                # Construct output
                output = torch.cat((output, prev), dim=1)

        output_text = self.enc.decode(output[0].tolist())
        return output_text

    def postprocess(self, token):
        with_space = False
        with_break = False
        if token.startswith('Ġ'):
            with_space = True
            token = token[1:]
            # print(token)
        elif token.startswith('â'):
            token = ' '
        elif token.startswith('Ċ'):
            token = ' '
            with_break = True

        token = '-' if token.startswith('â') else token
        token = '“' if token.startswith('ľ') else token
        token = '”' if token.startswith('Ŀ') else token
        token = "'" if token.startswith('Ļ') else token

        if with_space:
            token = '\u0120' + token
        if with_break:
            token = '\u010A' + token

        return token

class BERTLM(AbstractLanguageChecker):
    def __init__(self, model_name_or_path="bert-base-cased"):
        super(BERTLM, self).__init__()
        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")
        self.tokenizer = BertTokenizer.from_pretrained(
            model_name_or_path,
            do_lower_case=False)
        self.model = BertForMaskedLM.from_pretrained(
            model_name_or_path)
        self.model.to(self.device)
        self.model.eval()
        # BERT-specific symbols
        self.mask_tok = self.tokenizer.convert_tokens_to_ids(["[MASK]"])[0]
        self.pad = self.tokenizer.convert_tokens_to_ids(["[PAD]"])[0]
        print("Loaded BERT model!")

    def check_probabilities(self, in_text, topk=40, max_context=20,
                            batch_size=20):
        '''
        Same behavior as GPT-2
        Extra param: max_context controls how many words should be
        fed in left and right
        Speeds up inference since BERT requires prediction word by word
        '''
        in_text = "[CLS] " + in_text + " [SEP]"
        tokenized_text = self.tokenizer.tokenize(in_text)
        # Construct target
        y_toks = self.tokenizer.convert_tokens_to_ids(tokenized_text)
        # Only use sentence A embedding here since we have non-separable seq's
        segments_ids = [0] * len(y_toks)
        y = torch.tensor([y_toks]).to(self.device)
        segments_tensor = torch.tensor([segments_ids]).to(self.device)

        # TODO batching...
        # Create batches of (x,y)
        input_batches = []
        target_batches = []
        for min_ix in range(0, len(y_toks), batch_size):
            max_ix = min(min_ix + batch_size, len(y_toks) - 1)
            cur_input_batch = []
            cur_target_batch = []
            # Construct each batch
            for running_ix in range(max_ix - min_ix):
                tokens_tensor = y.clone()
                mask_index = min_ix + running_ix
                tokens_tensor[0, mask_index + 1] = self.mask_tok

                # Reduce computational complexity by subsetting
                min_index = max(0, mask_index - max_context)
                max_index = min(tokens_tensor.shape[1] - 1,
                                mask_index + max_context + 1)

                tokens_tensor = tokens_tensor[:, min_index:max_index]
                # Add padding
                needed_padding = max_context * 2 + 1 - tokens_tensor.shape[1]
                if min_index == 0 and max_index == y.shape[1] - 1:
                    # Only when input is shorter than max_context
                    left_needed = (max_context) - mask_index
                    right_needed = needed_padding - left_needed
                    p = torch.nn.ConstantPad1d((left_needed, right_needed),
                                               self.pad)
                    tokens_tensor = p(tokens_tensor)
                elif min_index == 0:
                    p = torch.nn.ConstantPad1d((needed_padding, 0), self.pad)
                    tokens_tensor = p(tokens_tensor)
                elif max_index == y.shape[1] - 1:
                    p = torch.nn.ConstantPad1d((0, needed_padding), self.pad)
                    tokens_tensor = p(tokens_tensor)

                cur_input_batch.append(tokens_tensor)
                cur_target_batch.append(y[:, mask_index + 1])
                # new_segments = segments_tensor[:, min_index:max_index]
            cur_input_batch = torch.cat(cur_input_batch, dim=0)
            cur_target_batch = torch.cat(cur_target_batch, dim=0)
            input_batches.append(cur_input_batch)
            target_batches.append(cur_target_batch)

        real_topk = []
        pred_topk = []

        with torch.no_grad():
            for src, tgt in zip(input_batches, target_batches):
                # Compute one batch of inputs
                # By construction, MASK is always the middle
                logits = self.model(src, torch.zeros_like(src))[:,
                         max_context + 1]
                yhat = torch.softmax(logits, dim=-1)

                sorted_preds = np.argsort(-yhat.data.cpu().numpy())
                # TODO: compare with batch of tgt

                # [(pos, prob), ...]
                real_topk_pos = list(
                    [int(np.where(sorted_preds[i] == tgt[i].item())[0][0])
                     for i in range(yhat.shape[0])])
                real_topk_probs = yhat[np.arange(
                    0, yhat.shape[0], 1), tgt].data.cpu().numpy().tolist()
                real_topk.extend(list(zip(real_topk_pos, real_topk_probs)))

                # # [[(pos, prob), ...], [(pos, prob), ..], ...]
                pred_topk.extend([list(zip(self.tokenizer.convert_ids_to_tokens(
                    sorted_preds[i][:topk]),
                    yhat[i][sorted_preds[i][
                            :topk]].data.cpu().numpy().tolist()))
                    for i in range(yhat.shape[0])])

        bpe_strings = [self.postprocess(s) for s in tokenized_text]
        pred_topk = [[(self.postprocess(t[0]), t[1]) for t in pred] for pred in pred_topk]
        payload = {'bpe_strings': bpe_strings,
                   'real_topk': real_topk,
                   'pred_topk': pred_topk}
        return payload

    def postprocess(self, token):

        with_space = True
        with_break = token == '[SEP]'
        if token.startswith('##'):
            with_space = False
            token = token[2:]

        if with_space:
            token = '\u0120' + token
        if with_break:
            token = '\u010A' + token
        #
        # # print ('....', token)
        return token


def main():
    raw_text = """ Hello I am Jane Doe """

    '''
    Tests for BERT
    '''
    lm = BERTLM()
    start = time.time()
    payload = lm.check_probabilities(raw_text, topk=5)
    end = time.time()
    print("{:.2f} Seconds for a run with BERT".format(end - start))
    # print("SAMPLE:", sample)

    '''
    Tests for GPT-2
    '''
    lm = LM()
    start = time.time()
    payload = lm.check_probabilities(raw_text, topk=5)
    end = time.time()
    print("{:.2f} Seconds for a check with GPT-2".format(end - start))

    start = time.time()
    sample = lm.sample_unconditional()
    end = time.time()
    print("{:.2f} Seconds for a sample from GPT-2".format(end - start))
    print("SAMPLE:", sample)


if __name__ == "__main__":
    main()