/Stroke-Prediction

Primary LanguageJupyter Notebook

Stroke-Prediction

According to the World Health Organization (WHO) stroke is the 2nd leading cause of death globally, responsible for approximately 11% of total deaths. This dataset is used to predict whether a patient is likely to get stroke based on the input parameters like gender, age, various diseases, and smoking status. Each row in the data provides relavant information about the patient.

Dataset

  1. id: unique identifier
  2. gender: "Male", "Female" or "Other"
  3. age: age of the patient
  4. hypertension: 0 if the patient doesn't have hypertension, 1 if the patient has hypertension
  5. heart_disease: 0 if the patient doesn't have any heart diseases, 1 if the patient has a heart disease
  6. ever_married: "No" or "Yes"
  7. work_type: "children", "Govt_jov", "Never_worked", "Private" or "Self-employed"
  8. Residence_type: "Rural" or "Urban"
  9. avg_glucose_level: average glucose level in blood
  10. bmi: body mass index
  11. smoking_status: "formerly smoked", "never smoked", "smokes" or "Unknown"*
  12. stroke: 1 if the patient had a stroke or 0 if not

Dataset

Machine Learning Models Used

  1. Logistic Regression with 86% Accuracy
  2. Decision Tree with 91% Accuracy
  3. Random Forrest with 95% Accuracy
  4. XGB with 96% Accuracy
  5. KNN with 93% Accuracy