Missing resnet layer in example 18
Closed this issue · 1 comments
bus6479 commented
Description
Resnet34 has 4 intermediate layers which consist of (3,4,6,3) blocks per each layer. However, last layer with 3 blocks does not exist.
How to reproduce
`
def create_model():
block_per_layers = (3, 4, 6, 3)
base_channel = 16
channel = (base_channel, 2*base_channel, 4*base_channel)
l0 = nn.Sequential(
nn.Conv2d(3, channel[0], kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(channel[0]),
nn.ReLU()
)
l1 = nn.Sequential(*concatenate_layer_blocks(channel[0], channel[0], block_per_layers[0],
first_layer=True))
l2 = nn.Sequential(*concatenate_layer_blocks(channel[0], channel[1], block_per_layers[1]))
l3 = nn.Sequential(*concatenate_layer_blocks(channel[1], channel[2], block_per_layers[2]))
l4 = nn.Sequential(
nn.AdaptiveAvgPool2d((1, 1)),
nn.Flatten(),
nn.Linear(channel[2], N_CLASSES)
)
return nn.Sequential(l0, l1, l2, l3, l4)
`
Expected behavior
Wrong resnet structure is implemented.
Other information
examples/18_cifar10_on_resnet.py create_model() 106-133 line
- Pytorch version:
- Package version:
- OS:
- Python version:
- Conda version (or N/A):