IBM/data-science-best-practices
The goal of this repository is to enable data scientists and ML engineers to develop data science use cases and making it ready for production use. This means focusing on the versioning, scalability, monitoring and engineering of the solution.
RubyCC-BY-4.0
Stargazers
- 5Y5TEMGoogle
- agiagoulasIBM
- AlexxNica@nikas-org
- aniftos
- anilyagiz
- aydinmyilmaz
- cimadureCanada
- dalakatt@mention
- davnnis2003@hellofresh
- Decoder11India
- devopstakles@IBM
- erxnFathridanza
- fenilrathod
- hermanaRegina, Saskatchewan
- j4real2208
- jederlichman-Ibm
- jizg@IBM
- jslecointreIBM
- Kazuki-Shimizu513
- kevin7lou@Bytedance @IBM
- paselin-vf
- pedrogomes5Porto
- PhilUlbLower Saxony, Germany
- PLLESiemens
- renat-abbyazovRussia
- rNLKJAPsyckitchen
- SinaBaghdadiTehran, Iran.
- studioevoque
- SyedUmairCodesKarachi,Pakistan
- teju163dst
- tjonesy10
- truegrampajoe
- ugkeBengaluru
- unitygirl@Accenture
- veeviann
- vinayrkumar