Tensor shape mismatch when computing apply_rotary_pos_emb
Tomorrowdawn opened this issue · 5 comments
Description:
When I tried to reproduce the paper result by README, an exception raised:
return forward_call(*args, **kwargs)
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/../Engine/Llama_model.py", line 59, in forward
layer_outputs = decoder_layer(
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/../Engine/Llama_modules.py", line 334, in forward
hidden_states = self.self_attn(
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/../Engine/Llama_modules.py", line 118, in forward
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/transformers/models/llama/modeling_llama.py", line 207, in apply_rotary_pos_emb
q_embed = (q * cos) + (rotate_half(q) * sin)
RuntimeError: The size of tensor a (12) must match the size of tensor b (384) at non-singleton dimension 1
I tracked the function calling and enabled the 'debug' flag in engine.model_run. When I tried it again, the assertion failed:
Traceback (most recent call last):
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/testbed.py", line 268, in <module>
draft_model.initialize_cuda_graph(graph_capture_list)
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/../Engine/Engine.py", line 189, in initialize_cuda_graph
self.callables[decoding_seqlen] = capture_graph(
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/../Engine/Engine.py", line 141, in capture_graph
static_logits = engine.model_run(
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/../Engine/Engine.py", line 34, in model_run
assert attention_mask.shape[0] == input_length
AssertionError
I checked the code and found a suspicious line in capture_graph
:
static_attn_mask = torch.full((decoding_seqlen, engine.max_length), 0, dtype=dtype, device=device)
static_attn_mask = static_attn_mask[None, None, :, :]
the last line changes static_attn_mask into shape of (1,1, x, y), which certainly fails the check.
I tried to comment the last line and received the same error again:
Traceback (most recent call last):
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/testbed.py", line 268, in <module>
draft_model.initialize_cuda_graph(graph_capture_list)
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/../Engine/Engine.py", line 189, in initialize_cuda_graph
self.callables[decoding_seqlen] = capture_graph(
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/../Engine/Engine.py", line 141, in capture_graph
static_logits = engine.model_run(
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/../Engine/Engine.py", line 38, in model_run
logits = self.model(input_ids=input_ids,
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/../Engine/Llama_model.py", line 201, in forward
outputs = self.model(
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/../Engine/Llama_model.py", line 59, in forward
layer_outputs = decoder_layer(
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/../Engine/Llama_modules.py", line 334, in forward
hidden_states = self.self_attn(
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_i
mpl
return self._call_impl(*args, **kwargs)
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/../Engine/Llama_modules.py", line 118, in forward
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/transformers/models/llama/modeling_llama.py", line 207, in apply_rotary_pos_emb
q_embed = (q * cos) + (rotate_half(q) * sin)
RuntimeError: The size of tensor a (12) must match the size of tensor b (384) at non-singleton dimension 1
After a thorough investigation of the source code, I discovered that within the implementation of attention, the query and key are transformed into the following forms.
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
I printed the tensors' shape:
query_states: torch.Size([1, 12, 19, 64])
key_states: torch.Size([1, 12, 19, 64])
cos: torch.Size([384, 64])
sin: torch.Size([384, 64])
position_ids: torch.Size([1, 19])
apply_rotary_pos_emb requires multiplying the cosine and query, which clearly do not match in shape. I'm uncertain about the original intention of the source code, hence unable to correct this issue on my own.
In the function of "apply_rotary_pos_emb" we have position_ids to slice the cos and sin tensor to be aligned with query and keys
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
So I think it's impossible to have a shape-misalignment bug here. Can you go to apply_rotary_pos_emb and print the shape of the tensor inside?
In the function of "apply_rotary_pos_emb" we have position_ids to slice the cos and sin tensor to be aligned with query and keys
cos = cos[position_ids].unsqueeze(unsqueeze_dim) sin = sin[position_ids].unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed
So I think it's impossible to have a shape-misalignment bug here. Can you go to apply_rotary_pos_emb and print the shape of the tensor inside?
I check the apply_rotary_pos_emb but it seems a little bit different
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
I've discovered that this is a compatibility issue. I have now rolled back to transformers==4.36(which was 4.38), and that problem has disappeared, but now issue #1 has occured.
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/testbed.py", line 297, in <module>
simulation_fast(target_model=target_model, draft_model=draft_model, dataloader=dataloader, T=args.T, to
p_p=args.P,
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/testbed.py", line 69, in simulation_fast
spectree = SpecTree(prefix=input_ids.squeeze(0), device='cuda:0', temperature=T,
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/../Tree/SpecTree.py", line 68, in __init__
draft_model_outputs = self.draft_model_engine.inference(input_ids=self.tokens[:self.num_nodes].unsqueez
e(0),
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in
decorate_context
return func(*args, **kwargs)
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/../Engine/Engine.py", line 244, in inference
return self.engine.model_run(input_ids=input_ids, storage_ids=storage_ids,
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in
decorate_context
return func(*args, **kwargs)
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/../Engine/Engine.py", line 40, in model_run
logits = self.model(input_ids=input_ids,
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in
_wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in
_call_implreturn forward_call(*args, **kwargs)
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/../Engine/Llama_model.py", line 201, in forward
outputs = self.model(
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/../Engine/Llama_model.py", line 59, in forward
layer_outputs = decoder_layer(
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/../Engine/Llama_modules.py", line 339, in forward
hidden_states = self.self_attn(
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/xiac/.conda/envs/rlhf/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
File "/data0/xiac/RLHF/Prelim/Sequoia/tests/../Engine/Llama_modules.py", line 132, in forward
attn_output = torch.nn.functional.scaled_dot_product_attention(
RuntimeError: p.attn_bias_ptr is not correctly aligned
Oh, you need to install torch 2.1.2. Actually, only this torch version (and maybe 2.1.1) is compatible. I will deal with this later. But for now, you can turn to torch 2.1.2.
Thank you for your response. After reconfiguring the environment, it indeed runs smoothly now.