JacobChalk/TIM

how to recreate the result

WannaSir opened this issue · 4 comments

image the result above is got using the command under the directory /TIM/recognition? and the result is got using which flag '--validate' or '--extract_feats' ? and i have no idea how to use the flag of '--validate' or '--extract_feats' to recreate the result, because the README.md file only provide simple command as the following show: image

Could you provide more detailed command ,so i can recreate the result using your pretrained_models.

Hi,

Yes, those results are achieved under the recognition folder using the validation flag, which will provide accuracy results as shown in the paper.

The extract features flag will simple extract the classification logits for each action and saves them to a dictionary.

As the ReadME mentions, the way this is done is by changing the detailed training commands above that section in the same ReadME and changing the --train flag to --validate, as well as adding the path to the pre-trained model with the --pretrained_model arg. The command would look like this:

python scripts/run_net.py \
--validate \
--output_dir /path/to/output \
--video_data_path /path/to/AVE_visual_features \
--video_train_action_pickle /path/to/AVE_train_annotations \
--video_val_action_pickle /path/to/AVE_validation_annotations \
--video_train_context_pickle /path/to/AVE_visual_feature_intervals \
--video_val_context_pickle /path/to/AVE_validation_visual_feature_intervals \
--visual_input_dim <channel-size-of-visual-features> \
--audio_data_path /path/to/AVE_audio_features \
--audio_train_action_pickle /path/to/AVE_train_annotations \
--audio_val_action_pickle /path/to/AVE_validation_annotations \
--audio_train_context_pickle /path/to/AVE_train_audio_feature_intervals \
--audio_val_context_pickle /path/to/AVE_audio_feature_intervals \
--audio_input_dim <channel-size-of-audio-features> \
--video_info_pickle /path/to/AVE_video_metadata \
--dataset ave \
--feat_stride 2 \
--feat_gap 0.2 \
--num_feats 25 \
--feat_dropout 0.1 \
--seq_dropout 0.1 \
--d_model 256 \
--apply_feature_pooling False \
--lr 5e-4 \
--lambda_audio 1.0 \
--lambda_drloc 0.1 \
--mixup_alpha 0.5 \
--include_verb_noun False \
--pretrained_model /path/to/pretrained_model

So the command is identical to the training command in the same ReadME, but with 2 changes. Hope this helps!