how to recreate the result
WannaSir opened this issue · 4 comments
Could you provide more detailed command ,so i can recreate the result using your pretrained_models.
Hi,
Yes, those results are achieved under the recognition folder using the validation flag, which will provide accuracy results as shown in the paper.
The extract features flag will simple extract the classification logits for each action and saves them to a dictionary.
As the ReadME mentions, the way this is done is by changing the detailed training commands above that section in the same ReadME and changing the --train
flag to --validate
, as well as adding the path to the pre-trained model with the --pretrained_model
arg. The command would look like this:
python scripts/run_net.py \
--validate \
--output_dir /path/to/output \
--video_data_path /path/to/AVE_visual_features \
--video_train_action_pickle /path/to/AVE_train_annotations \
--video_val_action_pickle /path/to/AVE_validation_annotations \
--video_train_context_pickle /path/to/AVE_visual_feature_intervals \
--video_val_context_pickle /path/to/AVE_validation_visual_feature_intervals \
--visual_input_dim <channel-size-of-visual-features> \
--audio_data_path /path/to/AVE_audio_features \
--audio_train_action_pickle /path/to/AVE_train_annotations \
--audio_val_action_pickle /path/to/AVE_validation_annotations \
--audio_train_context_pickle /path/to/AVE_train_audio_feature_intervals \
--audio_val_context_pickle /path/to/AVE_audio_feature_intervals \
--audio_input_dim <channel-size-of-audio-features> \
--video_info_pickle /path/to/AVE_video_metadata \
--dataset ave \
--feat_stride 2 \
--feat_gap 0.2 \
--num_feats 25 \
--feat_dropout 0.1 \
--seq_dropout 0.1 \
--d_model 256 \
--apply_feature_pooling False \
--lr 5e-4 \
--lambda_audio 1.0 \
--lambda_drloc 0.1 \
--mixup_alpha 0.5 \
--include_verb_noun False \
--pretrained_model /path/to/pretrained_model
So the command is identical to the training command in the same ReadME, but with 2 changes. Hope this helps!