JasonPeng1310's Stars
wyc941012/Edge-Intelligence
随着移动云计算和边缘计算的快速发展,以及人工智能的广泛应用,产生了边缘智能(Edge Intelligence)的概念。深度神经网络(例如CNN)已被广泛应用于移动智能应用程序中,但是移动设备有限的存储和计算资源无法满足深度神经网络计算的需求。神经网络压缩与加速技术可以加速神经网络的计算,例如剪枝、量化、卷积核分解等。但是这些技术在实际应用非常复杂,并且可能导致模型精度的下降。在移动云计算或边缘计算中,任务卸载技术可以突破移动终端的资源限制,减轻移动设备的计算负载并提高任务处理效率。通过任务卸载技术优化深度神经网络成为边缘智能研究中的新方向。Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge这篇文章提出了协同推断的**,将深度神经网络进行分区,一部分层在移动端计算,而另一部分在云端计算。根据硬件平台、无线网络以及服务器负载等因素实现动态分区,降低时延以及能耗。本项目给出了边缘智能方面的相关论文,并且给出了一个Python语言实现的卷积神经网络协同推断实验平台。关键词:边缘智能(Edge Intelligence),计算卸载(Computing Offloading),CNN模型分区(CNN Partition),协同推断(Collaborative Inference),移动云计算(Mobile Cloud Computing)
hliangzhao/Edge-Computing-Codes
Algorithm implementation for my Edge Computing-related papers.
revenol/LyDROO
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks
revenol/DDLO
Distributed Deep Learning-based Offloading for Mobile Edge Computing Networks
Gan-x-j/MEC-offloading-by-RL
HaiboMei/UAV-MEC-DRL
davidtw0320/Resources-Allocation-in-The-Edge-Computing-Environment-Using-Reinforcement-Learning
Simulated the scenario between edge servers and users with a clear graphic interface. Also, implemented the continuous control with Deep Deterministic Policy Gradient (DDPG) to determine the resources allocation (offload targets, computational resources, migration bandwidth) in the edge servers
wangshusen/DRL
Deep Reinforcement Learning
WangYichi1/Computation-offloading-based-on-DQN
Joint strategy design on edge computing offloading based on deep reinforcement learning
IIT-Lab/GraduationProject
基于深度强化学习的MEC计算卸载与资源分配
nju-cn/MEC_offloading_ADQN
采用强化学习来实现计算卸载
lehongwen/awesome-edge-computing
边缘计算工程,从边缘计算概念、标准、软件系统、工程到商业应用。
p0llx/my_MEC_program
I build this Mobile Edge Computation simulating environment all by myself, and use the costomized ddpg reinforcement learning algorithm to make offloading decision.
syndtr/goleveldb
LevelDB key/value database in Go.
Sophia-11/Machine-Learning-Notes
周志华《机器学习》手推笔记
quic-go/quic-go
A QUIC implementation in pure Go
woai3c/MIT6.828
实现一个操作系统内核
boyu-ai/Hands-on-RL
https://hrl.boyuai.com/
doocs/source-code-hunter
😱 从源码层面,剖析挖掘互联网行业主流技术的底层实现原理,为广大开发者 “提升技术深度” 提供便利。目前开放 Spring 全家桶,Mybatis、Netty、Dubbo 框架,及 Redis、Tomcat 中间件等
doocs/advanced-java
😮 Core Interview Questions & Answers For Experienced Java(Backend) Developers | 互联网 Java 工程师进阶知识完全扫盲:涵盖高并发、分布式、高可用、微服务、海量数据处理等领域知识
GitHubDaily/GitHubDaily
坚持分享 GitHub 上高质量、有趣实用的开源技术教程、开发者工具、编程网站、技术资讯。A list cool, interesting projects of GitHub.
CosmosPsi/CosmosDocs
anuraghazra/github-readme-stats
:zap: Dynamically generated stats for your github readmes
datawhalechina/easy-rl
强化学习中文教程(蘑菇书🍄),在线阅读地址:https://datawhalechina.github.io/easy-rl/
SiskonEmilia/5G-D2D-based-MEC-Simulator
论文仿真实验代码开源
geektutu/interview-questions
机器学习/深度学习/Python/Go语言面试题笔试题(Machine learning Deep Learning Python and Golang Interview Questions)
geektutu/7days-golang
7 days golang programs from scratch (web framework Gee, distributed cache GeeCache, object relational mapping ORM framework GeeORM, rpc framework GeeRPC etc) 7天用Go动手写/从零实现系列
yangsoon/talen-plan-report
PingCAP Talent-Plan(TIDB)1.0 题解 成绩: Section1: 95分 Section2: 97分 Section3: 100分 Section4: 88分
matrixorigin/talent-challenge
Programming challenges for MO candidates
matrixorigin/matrixone
Hyperconverged cloud-edge native database