KevinQian97/ELECTRICITY-MTMC

init pretrained weights

HanwenCao opened this issue · 16 comments

In training, the pretrained weights of resnet50 seem to be loaded to resnet101. Here are the logs:
Initializing model: resnet101
Downloading: "https://download.pytorch.org/models/resnet50-19c8e357.pth"

I was wondering why not use resnet101's pretrained weights to initialize resnet101? Thank you!

Hi Hanwen, I thought it a strategy for training. We might release specific illustrations in another repo in the future. Thanks!

Thank you, Kevin. I only achieve mAP: 20.4% and Rank-1 : 34.4% after training the Re-id model. (almost the same for epoch 9-25) Am I doing right? Thank you

Hi, I further load the weights you provided in this repo and it can achieve mAP: 82.4% and Rank-1 : 92.2%, which is much better than my weights.

Hi Hanwen,
I thought mAP: 20.4% and Rank-1: 34.4% seems to have some problems. Now that the hosts of AiCity can successfully reproduce our training procedure, I assume some problems happened in your training procedure. I think it a great idea to try our provided model first. BTW, a star can give us more motivation to continue releasing the code.

Sorry, just notice you have tried our provided model. Then, did u make any modifications to the training script that we provide?

Sorry, just notice you have tried our provided model. Then, did u make any modifications to the training script that we provide?

Oh yes. Due to the memory limitation of my machine, I use a smaller train_bath_size, i.e. 64, rather than 128.

I will create a new project and try to use the exact same training script that you provided to train, including the batch size, to see if that can help. I will let you know if I am done. Thank you for your reply!

Hi Kevin,
calculate_mean_and_std is slow. Can I comment it out?

Besides, I have noticed that in build_transforms fixed values are placed. So looks like commenting the above line won't influence.

I further spend some time to calculate_mean_and_std. I then got mean and std: tensor([-0.4599, -0.2843, 0.1362]) tensor([1.0227, 1.0484, 0.9768]). But the fixed values in your code are not equal to the mean and std calculated by calculate_mean_and_std. Does it matter?

Hi Kevin,
This time I use the same training code and args with the modification listed below:

  1. I comment calculate_mean_and_std as talked before
  2. I download resnet50-19c8e357.pth to a local path and modify the line at here by pretrain_dict = model_zoo.load_url(model_url,model_dir='/model/caohw9/track3_model'). The goal is trying to prevent downloading by using the local weights file. Not sure if it is correct though.
  3. no I think that's all...

But I still cannot achieve a high mAP and rank-1. Here is the log.

Currently using GPU 0
Initializing image data manager
=> Initializing TRAIN (source) datasets
=> Initializing TEST datasets


  **************** Summary ****************
  train names      : ['Aic']
  # train datasets : 1
  # train ids      : 521
  # train images   : 206059
  # train cameras  : 36
  test names       : Aic
  *****************************************


Initializing model: resnet101
Model size: 42.500 M
=> Start training
Epoch: [1][100/1609]	Time 0.535 (0.958)	Data 0.0008 (0.3947)	Xent 5.9572 (6.0629)	Htri 0.1422 (0.2513)	Acc 2.34 (1.87)	
Epoch: [1][200/1609]	Time 0.929 (0.904)	Data 0.4190 (0.3739)	Xent 5.9288 (6.0237)	Htri 0.1243 (0.1930)	Acc 2.34 (1.98)	
Epoch: [1][300/1609]	Time 0.568 (0.889)	Data 0.0517 (0.3701)	Xent 5.8334 (5.9870)	Htri 0.1691 (0.1704)	Acc 1.56 (2.15)	
Epoch: [1][400/1609]	Time 0.797 (0.882)	Data 0.3114 (0.3688)	Xent 4.8599 (5.8658)	Htri 0.2285 (0.1915)	Acc 11.72 (2.77)	
Epoch: [1][500/1609]	Time 0.496 (0.885)	Data 0.0011 (0.3762)	Xent 3.9280 (5.5799)	Htri 0.2541 (0.2335)	Acc 12.50 (4.42)	
Epoch: [1][600/1609]	Time 0.471 (0.884)	Data 0.0005 (0.3783)	Xent 3.2735 (5.2284)	Htri 0.4535 (0.2697)	Acc 21.09 (7.15)	
Epoch: [1][700/1609]	Time 0.489 (0.880)	Data 0.0002 (0.3770)	Xent 2.3923 (4.8827)	Htri 0.3877 (0.2877)	Acc 37.50 (10.67)	
Epoch: [1][800/1609]	Time 0.479 (0.888)	Data 0.0005 (0.3876)	Xent 2.1850 (4.5608)	Htri 0.2014 (0.2936)	Acc 41.41 (14.51)	
Epoch: [1][900/1609]	Time 0.471 (0.893)	Data 0.0002 (0.3944)	Xent 1.8294 (4.2687)	Htri 0.4545 (0.2962)	Acc 53.12 (18.39)	
Epoch: [1][1000/1609]	Time 0.476 (0.893)	Data 0.0002 (0.3958)	Xent 1.6893 (4.0037)	Htri 0.2295 (0.2933)	Acc 59.38 (22.28)	
Epoch: [1][1100/1609]	Time 0.480 (0.888)	Data 0.0002 (0.3924)	Xent 1.3831 (3.7635)	Htri 0.1999 (0.2868)	Acc 61.72 (26.02)	
Epoch: [1][1200/1609]	Time 0.476 (0.882)	Data 0.0005 (0.3880)	Xent 1.0735 (3.5479)	Htri 0.2118 (0.2791)	Acc 71.88 (29.57)	
Epoch: [1][1300/1609]	Time 0.475 (0.876)	Data 0.0002 (0.3831)	Xent 0.9743 (3.3559)	Htri 0.1204 (0.2721)	Acc 71.88 (32.82)	
Epoch: [1][1400/1609]	Time 0.469 (0.874)	Data 0.0002 (0.3815)	Xent 1.0831 (3.1823)	Htri 0.2948 (0.2645)	Acc 73.44 (35.83)	
Epoch: [1][1500/1609]	Time 0.491 (0.873)	Data 0.0004 (0.3808)	Xent 0.8309 (3.0257)	Htri 0.3563 (0.2576)	Acc 77.34 (38.61)	
Epoch: [1][1600/1609]	Time 0.473 (0.869)	Data 0.0002 (0.3774)	Xent 0.7550 (2.8854)	Htri 0.2194 (0.2505)	Acc 76.56 (41.11)	
=> Validation
Evaluating Aic ...
Extracted features for query set, obtained 3028-by-2048 matrix
Extracted features for gallery set, obtained 20494-by-2048 matrix
=> BatchTime(s)/BatchSize(img): 0.101/256
Computing CMC and mAP
Results ----------
mAP: 11.6%
CMC curve
Rank-1  : 18.9%
Rank-5  : 30.0%
Rank-10 : 34.7%
Rank-20 : 43.1%
------------------
Checkpoint saved to "/output/models/resnet101-Aic/model.pth.tar-1"
Epoch: [2][100/1609]	Time 0.494 (0.491)	Data 0.0016 (0.0090)	Xent 0.7822 (0.6875)	Htri 0.1342 (0.1303)	Acc 79.69 (81.63)	
Epoch: [2][200/1609]	Time 0.474 (0.484)	Data 0.0007 (0.0048)	Xent 0.7326 (0.6587)	Htri 0.0875 (0.1248)	Acc 81.25 (82.33)	
Epoch: [2][300/1609]	Time 0.478 (0.482)	Data 0.0007 (0.0034)	Xent 0.5381 (0.6413)	Htri 0.1281 (0.1220)	Acc 85.94 (82.78)	
Epoch: [2][400/1609]	Time 0.468 (0.480)	Data 0.0005 (0.0027)	Xent 0.5125 (0.6274)	Htri 0.0469 (0.1209)	Acc 85.94 (83.20)	
Epoch: [2][500/1609]	Time 0.458 (0.480)	Data 0.0005 (0.0023)	Xent 0.5749 (0.6053)	Htri 0.1293 (0.1156)	Acc 85.16 (83.85)	
Epoch: [2][600/1609]	Time 0.473 (0.479)	Data 0.0006 (0.0020)	Xent 0.4393 (0.5843)	Htri 0.1207 (0.1106)	Acc 89.06 (84.45)	
Epoch: [2][700/1609]	Time 0.467 (0.479)	Data 0.0007 (0.0018)	Xent 0.3883 (0.5684)	Htri 0.0429 (0.1071)	Acc 89.06 (84.85)	
Epoch: [2][800/1609]	Time 0.467 (0.479)	Data 0.0005 (0.0017)	Xent 0.4700 (0.5511)	Htri 0.3527 (0.1044)	Acc 89.06 (85.33)	
Epoch: [2][900/1609]	Time 0.471 (0.479)	Data 0.0005 (0.0016)	Xent 0.4654 (0.5371)	Htri 0.0309 (0.1025)	Acc 87.50 (85.77)	
Epoch: [2][1000/1609]	Time 0.467 (0.479)	Data 0.0004 (0.0020)	Xent 0.3293 (0.5261)	Htri 0.0931 (0.1004)	Acc 92.19 (86.06)	
Epoch: [2][1100/1609]	Time 0.478 (0.479)	Data 0.0004 (0.0018)	Xent 0.4022 (0.5144)	Htri 0.0634 (0.0978)	Acc 89.84 (86.41)	
Epoch: [2][1200/1609]	Time 0.481 (0.479)	Data 0.0007 (0.0017)	Xent 0.3909 (0.4990)	Htri 0.1587 (0.0945)	Acc 90.62 (86.87)	
Epoch: [2][1300/1609]	Time 0.462 (0.479)	Data 0.0006 (0.0016)	Xent 0.5039 (0.4885)	Htri 0.1012 (0.0930)	Acc 91.41 (87.17)	
Epoch: [2][1400/1609]	Time 0.471 (0.479)	Data 0.0004 (0.0016)	Xent 0.2532 (0.4781)	Htri 0.0221 (0.0903)	Acc 96.09 (87.46)	
Epoch: [2][1500/1609]	Time 0.482 (0.479)	Data 0.0005 (0.0015)	Xent 0.2285 (0.4668)	Htri 0.1213 (0.0880)	Acc 95.31 (87.79)	
Epoch: [2][1600/1609]	Time 0.476 (0.479)	Data 0.0005 (0.0015)	Xent 0.2717 (0.4564)	Htri 0.1202 (0.0858)	Acc 94.53 (88.09)	
=> Validation
Evaluating Aic ...
Extracted features for query set, obtained 3028-by-2048 matrix
Extracted features for gallery set, obtained 20494-by-2048 matrix
=> BatchTime(s)/BatchSize(img): 0.065/256
Computing CMC and mAP
Results ----------
mAP: 16.7%
CMC curve
Rank-1  : 27.1%
Rank-5  : 37.8%
Rank-10 : 44.9%
Rank-20 : 51.6%
------------------
Checkpoint saved to "/output/models/resnet101-Aic/model.pth.tar-2"
Epoch: [3][100/1609]	Time 0.472 (0.485)	Data 0.0005 (0.0083)	Xent 0.4068 (0.2817)	Htri 0.1156 (0.0521)	Acc 87.50 (93.03)	
Epoch: [3][200/1609]	Time 0.474 (0.480)	Data 0.0005 (0.0047)	Xent 0.2807 (0.2778)	Htri 0.0407 (0.0474)	Acc 92.19 (93.11)	
Epoch: [3][300/1609]	Time 0.470 (0.479)	Data 0.0004 (0.0034)	Xent 0.2790 (0.2835)	Htri 0.0600 (0.0518)	Acc 96.09 (93.01)	
Epoch: [3][400/1609]	Time 0.469 (0.478)	Data 0.0005 (0.0028)	Xent 0.2447 (0.2847)	Htri 0.0557 (0.0494)	Acc 93.75 (93.03)	
Epoch: [3][500/1609]	Time 0.473 (0.478)	Data 0.0006 (0.0024)	Xent 0.2447 (0.2837)	Htri 0.0168 (0.0493)	Acc 92.19 (93.08)	
Epoch: [3][600/1609]	Time 0.484 (0.478)	Data 0.0007 (0.0021)	Xent 0.1971 (0.2825)	Htri 0.0637 (0.0497)	Acc 96.09 (93.10)	
Epoch: [3][700/1609]	Time 0.483 (0.478)	Data 0.0005 (0.0020)	Xent 0.2601 (0.2805)	Htri 0.0575 (0.0504)	Acc 94.53 (93.13)	
Epoch: [3][800/1609]	Time 0.480 (0.478)	Data 0.0015 (0.0018)	Xent 0.2517 (0.2750)	Htri 0.0000 (0.0492)	Acc 93.75 (93.28)	
Epoch: [3][900/1609]	Time 0.472 (0.478)	Data 0.0004 (0.0017)	Xent 0.2213 (0.2711)	Htri 0.0061 (0.0478)	Acc 94.53 (93.39)	
Epoch: [3][1000/1609]	Time 0.483 (0.478)	Data 0.0005 (0.0017)	Xent 0.2835 (0.2680)	Htri 0.0141 (0.0470)	Acc 92.19 (93.47)	
Epoch: [3][1100/1609]	Time 0.486 (0.478)	Data 0.0007 (0.0016)	Xent 0.3539 (0.2652)	Htri 0.0309 (0.0463)	Acc 86.72 (93.55)	
Epoch: [3][1200/1609]	Time 0.473 (0.478)	Data 0.0007 (0.0015)	Xent 0.2219 (0.2626)	Htri 0.0154 (0.0463)	Acc 92.97 (93.63)	
Epoch: [3][1300/1609]	Time 0.481 (0.478)	Data 0.0013 (0.0015)	Xent 0.1932 (0.2603)	Htri 0.0737 (0.0456)	Acc 96.09 (93.70)	
Epoch: [3][1400/1609]	Time 0.477 (0.478)	Data 0.0011 (0.0014)	Xent 0.2690 (0.2577)	Htri 0.0260 (0.0451)	Acc 92.97 (93.77)	
Epoch: [3][1500/1609]	Time 0.487 (0.477)	Data 0.0007 (0.0014)	Xent 0.2305 (0.2546)	Htri 0.0673 (0.0442)	Acc 93.75 (93.86)	
Epoch: [3][1600/1609]	Time 0.478 (0.477)	Data 0.0016 (0.0014)	Xent 0.3577 (0.2523)	Htri 0.0081 (0.0439)	Acc 92.19 (93.92)	
=> Validation
Evaluating Aic ...
Extracted features for query set, obtained 3028-by-2048 matrix
Extracted features for gallery set, obtained 20494-by-2048 matrix
=> BatchTime(s)/BatchSize(img): 0.066/256
Computing CMC and mAP
Results ----------
mAP: 17.6%
CMC curve
Rank-1  : 28.9%
Rank-5  : 39.3%
Rank-10 : 47.6%
Rank-20 : 54.4%
------------------
Checkpoint saved to "/output/models/resnet101-Aic/model.pth.tar-3"
Epoch: [4][100/1609]	Time 0.468 (0.481)	Data 0.0006 (0.0078)	Xent 0.2021 (0.2164)	Htri 0.0000 (0.0372)	Acc 94.53 (94.84)	
Epoch: [4][200/1609]	Time 0.469 (0.478)	Data 0.0007 (0.0043)	Xent 0.1921 (0.1994)	Htri 0.0000 (0.0316)	Acc 96.09 (95.30)	
Epoch: [4][300/1609]	Time 0.471 (0.476)	Data 0.0006 (0.0031)	Xent 0.1502 (0.1921)	Htri 0.0155 (0.0306)	Acc 97.66 (95.54)	
Epoch: [4][400/1609]	Time 0.479 (0.476)	Data 0.0017 (0.0025)	Xent 0.1193 (0.1932)	Htri 0.0147 (0.0315)	Acc 96.88 (95.51)	
Epoch: [4][500/1609]	Time 0.473 (0.476)	Data 0.0008 (0.0022)	Xent 0.1620 (0.1916)	Htri 0.0000 (0.0314)	Acc 95.31 (95.58)	
Epoch: [4][600/1609]	Time 0.461 (0.475)	Data 0.0006 (0.0020)	Xent 0.2531 (0.1926)	Htri 0.1143 (0.0315)	Acc 95.31 (95.55)	
Epoch: [4][700/1609]	Time 0.474 (0.475)	Data 0.0014 (0.0018)	Xent 0.2256 (0.1954)	Htri 0.0000 (0.0314)	Acc 95.31 (95.48)	
Epoch: [4][800/1609]	Time 0.468 (0.475)	Data 0.0005 (0.0017)	Xent 0.1945 (0.1961)	Htri 0.0109 (0.0314)	Acc 93.75 (95.45)	
Epoch: [4][900/1609]	Time 0.479 (0.475)	Data 0.0008 (0.0016)	Xent 0.1585 (0.1965)	Htri 0.0000 (0.0312)	Acc 98.44 (95.45)	
Epoch: [4][1000/1609]	Time 0.476 (0.475)	Data 0.0009 (0.0015)	Xent 0.2160 (0.1945)	Htri 0.0146 (0.0308)	Acc 95.31 (95.52)	
Epoch: [4][1100/1609]	Time 0.481 (0.475)	Data 0.0007 (0.0015)	Xent 0.1940 (0.1922)	Htri 0.0095 (0.0304)	Acc 93.75 (95.59)	
Epoch: [4][1200/1609]	Time 0.469 (0.475)	Data 0.0006 (0.0014)	Xent 0.1885 (0.1898)	Htri 0.0202 (0.0297)	Acc 96.09 (95.66)	
Epoch: [4][1300/1609]	Time 0.498 (0.475)	Data 0.0010 (0.0014)	Xent 0.1664 (0.1871)	Htri 0.0937 (0.0288)	Acc 95.31 (95.73)	
Epoch: [4][1400/1609]	Time 0.470 (0.475)	Data 0.0004 (0.0014)	Xent 0.1845 (0.1849)	Htri 0.0693 (0.0283)	Acc 96.88 (95.81)	
Epoch: [4][1500/1609]	Time 0.471 (0.475)	Data 0.0005 (0.0013)	Xent 0.1982 (0.1829)	Htri 0.0058 (0.0279)	Acc 96.09 (95.87)	
Epoch: [4][1600/1609]	Time 0.457 (0.475)	Data 0.0007 (0.0013)	Xent 0.2275 (0.1832)	Htri 0.0244 (0.0277)	Acc 96.09 (95.86)	
=> Validation
Evaluating Aic ...
Extracted features for query set, obtained 3028-by-2048 matrix
Extracted features for gallery set, obtained 20494-by-2048 matrix
=> BatchTime(s)/BatchSize(img): 0.066/256
Computing CMC and mAP
Results ----------
mAP: 15.7%
CMC curve
Rank-1  : 23.3%
Rank-5  : 36.4%
Rank-10 : 43.8%
Rank-20 : 51.8%
------------------
Checkpoint saved to "/output/models/resnet101-Aic/model.pth.tar-4"
Epoch: [5][100/1609]	Time 0.493 (0.483)	Data 0.0006 (0.0090)	Xent 0.2329 (0.1396)	Htri 0.0873 (0.0192)	Acc 96.88 (97.27)	
Epoch: [5][200/1609]	Time 0.465 (0.478)	Data 0.0008 (0.0049)	Xent 0.1902 (0.1435)	Htri 0.0069 (0.0209)	Acc 93.75 (97.09)	
Epoch: [5][300/1609]	Time 0.480 (0.476)	Data 0.0016 (0.0035)	Xent 0.1616 (0.1495)	Htri 0.0021 (0.0216)	Acc 97.66 (96.93)	
Epoch: [5][400/1609]	Time 0.481 (0.475)	Data 0.0007 (0.0029)	Xent 0.1752 (0.1549)	Htri 0.0020 (0.0220)	Acc 96.88 (96.79)	
Epoch: [5][500/1609]	Time 0.474 (0.476)	Data 0.0015 (0.0025)	Xent 0.1421 (0.1529)	Htri 0.0000 (0.0213)	Acc 95.31 (96.81)	
Epoch: [5][600/1609]	Time 0.463 (0.475)	Data 0.0007 (0.0022)	Xent 0.1611 (0.1503)	Htri 0.0000 (0.0202)	Acc 95.31 (96.82)	
Epoch: [5][700/1609]	Time 0.478 (0.475)	Data 0.0005 (0.0020)	Xent 0.2193 (0.1515)	Htri 0.0058 (0.0208)	Acc 94.53 (96.79)	
Epoch: [5][800/1609]	Time 0.461 (0.475)	Data 0.0007 (0.0019)	Xent 0.1331 (0.1519)	Htri 0.0000 (0.0208)	Acc 98.44 (96.77)	
Epoch: [5][900/1609]	Time 0.471 (0.475)	Data 0.0009 (0.0018)	Xent 0.1158 (0.1545)	Htri 0.0337 (0.0213)	Acc 100.00 (96.71)	
Epoch: [5][1000/1609]	Time 0.476 (0.475)	Data 0.0007 (0.0017)	Xent 0.1043 (0.1586)	Htri 0.0021 (0.0225)	Acc 99.22 (96.59)	
Epoch: [5][1100/1609]	Time 0.456 (0.475)	Data 0.0006 (0.0016)	Xent 0.0808 (0.1576)	Htri 0.0242 (0.0222)	Acc 97.66 (96.60)	
Epoch: [5][1200/1609]	Time 0.469 (0.475)	Data 0.0007 (0.0015)	Xent 0.1015 (0.1570)	Htri 0.0148 (0.0221)	Acc 99.22 (96.62)	
Epoch: [5][1300/1609]	Time 0.485 (0.475)	Data 0.0011 (0.0015)	Xent 0.1049 (0.1544)	Htri 0.0035 (0.0214)	Acc 98.44 (96.70)	
Epoch: [5][1400/1609]	Time 0.495 (0.475)	Data 0.0009 (0.0014)	Xent 0.0804 (0.1526)	Htri 0.0000 (0.0210)	Acc 99.22 (96.74)	
Epoch: [5][1500/1609]	Time 0.488 (0.478)	Data 0.0008 (0.0030)	Xent 0.1842 (0.1524)	Htri 0.0184 (0.0209)	Acc 95.31 (96.76)	
Epoch: [5][1600/1609]	Time 0.478 (0.479)	Data 0.0004 (0.0028)	Xent 0.1615 (0.1519)	Htri 0.0000 (0.0207)	Acc 98.44 (96.77)	
=> Validation
Evaluating Aic ...
Extracted features for query set, obtained 3028-by-2048 matrix
Extracted features for gallery set, obtained 20494-by-2048 matrix
=> BatchTime(s)/BatchSize(img): 0.058/256
Computing CMC and mAP
Results ----------
mAP: 17.5%
CMC curve
Rank-1  : 31.1%
Rank-5  : 41.1%
Rank-10 : 47.8%
Rank-20 : 55.1%
------------------
Checkpoint saved to "/output/models/resnet101-Aic/model.pth.tar-5"
Epoch: [6][100/1609]	Time 0.480 (0.513)	Data 0.0008 (0.0288)	Xent 0.1906 (0.1312)	Htri 0.0000 (0.0140)	Acc 96.09 (97.11)	
Epoch: [6][200/1609]	Time 0.496 (0.500)	Data 0.0015 (0.0149)	Xent 0.1652 (0.1264)	Htri 0.0000 (0.0140)	Acc 95.31 (97.36)	
Epoch: [6][300/1609]	Time 0.468 (0.497)	Data 0.0006 (0.0102)	Xent 0.0757 (0.1267)	Htri 0.0000 (0.0139)	Acc 97.66 (97.34)	
Epoch: [6][400/1609]	Time 0.478 (0.498)	Data 0.0008 (0.0086)	Xent 0.0886 (0.1294)	Htri 0.0000 (0.0157)	Acc 99.22 (97.29)	
Epoch: [6][500/1609]	Time 0.492 (0.496)	Data 0.0007 (0.0070)	Xent 0.1583 (0.1292)	Htri 0.0885 (0.0156)	Acc 96.88 (97.31)	
Epoch: [6][600/1609]	Time 0.477 (0.498)	Data 0.0009 (0.0088)	Xent 0.1911 (0.1343)	Htri 0.0000 (0.0174)	Acc 94.53 (97.17)	
Epoch: [6][700/1609]	Time 0.481 (0.497)	Data 0.0008 (0.0077)	Xent 0.1532 (0.1385)	Htri 0.0003 (0.0181)	Acc 96.88 (97.07)	
Epoch: [6][800/1609]	Time 0.488 (0.496)	Data 0.0010 (0.0068)	Xent 0.1321 (0.1380)	Htri 0.0115 (0.0184)	Acc 96.88 (97.10)	
Epoch: [6][900/1609]	Time 0.471 (0.497)	Data 0.0008 (0.0081)	Xent 0.1602 (0.1420)	Htri 0.0024 (0.0191)	Acc 97.66 (96.99)	
Epoch: [6][1000/1609]	Time 0.483 (0.496)	Data 0.0009 (0.0074)	Xent 0.2067 (0.1429)	Htri 0.0051 (0.0196)	Acc 95.31 (96.94)	
Epoch: [6][1100/1609]	Time 0.497 (0.495)	Data 0.0013 (0.0068)	Xent 0.1295 (0.1423)	Htri 0.0000 (0.0194)	Acc 97.66 (96.97)	
Epoch: [6][1200/1609]	Time 0.484 (0.494)	Data 0.0012 (0.0063)	Xent 0.1279 (0.1419)	Htri 0.0000 (0.0196)	Acc 97.66 (96.99)	
Epoch: [6][1300/1609]	Time 0.483 (0.494)	Data 0.0005 (0.0059)	Xent 0.1385 (0.1429)	Htri 0.0609 (0.0196)	Acc 98.44 (96.97)	
Epoch: [6][1400/1609]	Time 0.473 (0.493)	Data 0.0006 (0.0055)	Xent 0.1856 (0.1440)	Htri 0.0277 (0.0202)	Acc 95.31 (96.94)	
Epoch: [6][1500/1609]	Time 0.477 (0.493)	Data 0.0008 (0.0052)	Xent 0.0706 (0.1445)	Htri 0.0000 (0.0201)	Acc 100.00 (96.92)	
Epoch: [6][1600/1609]	Time 0.479 (0.493)	Data 0.0006 (0.0049)	Xent 0.1654 (0.1431)	Htri 0.0049 (0.0199)	Acc 95.31 (96.96)	
=> Validation
Evaluating Aic ...
Extracted features for query set, obtained 3028-by-2048 matrix
Extracted features for gallery set, obtained 20494-by-2048 matrix
=> BatchTime(s)/BatchSize(img): 0.060/256
Computing CMC and mAP
Results ----------
mAP: 20.6%
CMC curve
Rank-1  : 32.7%
Rank-5  : 43.8%
Rank-10 : 50.9%
Rank-20 : 57.6%
------------------
Checkpoint saved to "/output/models/resnet101-Aic/model.pth.tar-6"
Epoch: [7][100/1609]	Time 0.477 (0.522)	Data 0.0007 (0.0379)	Xent 0.1657 (0.1275)	Htri 0.0000 (0.0193)	Acc 97.66 (97.34)	
Epoch: [7][200/1609]	Time 0.504 (0.513)	Data 0.0008 (0.0263)	Xent 0.1211 (0.1179)	Htri 0.0108 (0.0164)	Acc 97.66 (97.54)	
Epoch: [7][300/1609]	Time 0.479 (0.504)	Data 0.0008 (0.0180)	Xent 0.1161 (0.1131)	Htri 0.0510 (0.0151)	Acc 97.66 (97.67)	
Epoch: [7][400/1609]	Time 0.483 (0.501)	Data 0.0008 (0.0137)	Xent 0.0833 (0.1153)	Htri 0.0000 (0.0151)	Acc 97.66 (97.64)	
Epoch: [7][500/1609]	Time 0.481 (0.498)	Data 0.0008 (0.0111)	Xent 0.0466 (0.1123)	Htri 0.0000 (0.0141)	Acc 100.00 (97.72)	
Epoch: [7][600/1609]	Time 0.482 (0.496)	Data 0.0008 (0.0094)	Xent 0.1146 (0.1115)	Htri 0.0000 (0.0143)	Acc 97.66 (97.74)	
Epoch: [7][700/1609]	Time 0.501 (0.495)	Data 0.0008 (0.0082)	Xent 0.1027 (0.1168)	Htri 0.0103 (0.0156)	Acc 97.66 (97.65)	
Epoch: [7][800/1609]	Time 0.486 (0.494)	Data 0.0011 (0.0073)	Xent 0.1421 (0.1178)	Htri 0.0080 (0.0158)	Acc 96.88 (97.66)	
Epoch: [7][900/1609]	Time 0.479 (0.493)	Data 0.0006 (0.0065)	Xent 0.1317 (0.1210)	Htri 0.0046 (0.0159)	Acc 96.88 (97.59)	
Epoch: [7][1000/1609]	Time 0.540 (0.493)	Data 0.0009 (0.0060)	Xent 0.2222 (0.1244)	Htri 0.0946 (0.0167)	Acc 93.75 (97.50)	
Epoch: [7][1100/1609]	Time 0.481 (0.493)	Data 0.0008 (0.0061)	Xent 0.1009 (0.1264)	Htri 0.0000 (0.0168)	Acc 97.66 (97.45)	
Epoch: [7][1200/1609]	Time 0.486 (0.493)	Data 0.0005 (0.0057)	Xent 0.0915 (0.1251)	Htri 0.0000 (0.0163)	Acc 99.22 (97.48)	
Epoch: [7][1300/1609]	Time 0.479 (0.493)	Data 0.0009 (0.0053)	Xent 0.0919 (0.1233)	Htri 0.0592 (0.0158)	Acc 98.44 (97.53)	
Epoch: [7][1400/1609]	Time 0.491 (0.493)	Data 0.0010 (0.0050)	Xent 0.1308 (0.1236)	Htri 0.0576 (0.0159)	Acc 96.09 (97.52)	
Epoch: [7][1500/1609]	Time 0.491 (0.493)	Data 0.0007 (0.0057)	Xent 0.0793 (0.1234)	Htri 0.0000 (0.0159)	Acc 97.66 (97.53)	
Epoch: [7][1600/1609]	Time 0.473 (0.495)	Data 0.0008 (0.0071)	Xent 0.1075 (0.1234)	Htri 0.0217 (0.0159)	Acc 98.44 (97.52)	
=> Validation
Evaluating Aic ...
Extracted features for query set, obtained 3028-by-2048 matrix
Extracted features for gallery set, obtained 20494-by-2048 matrix
=> BatchTime(s)/BatchSize(img): 0.062/256
Computing CMC and mAP
Results ----------
mAP: 19.9%
CMC curve
Rank-1  : 35.6%
Rank-5  : 46.0%
Rank-10 : 54.0%
Rank-20 : 62.4%
------------------
Checkpoint saved to "/output/models/resnet101-Aic/model.pth.tar-7"
Epoch: [8][100/1609]	Time 0.496 (0.508)	Data 0.0012 (0.0221)	Xent 0.1181 (0.1140)	Htri 0.0055 (0.0133)	Acc 97.66 (97.71)	
Epoch: [8][200/1609]	Time 0.477 (0.497)	Data 0.0008 (0.0115)	Xent 0.0810 (0.1008)	Htri 0.0000 (0.0093)	Acc 99.22 (98.06)	
Epoch: [8][300/1609]	Time 0.478 (0.495)	Data 0.0007 (0.0080)	Xent 0.0794 (0.0953)	Htri 0.0000 (0.0086)	Acc 97.66 (98.18)	
Epoch: [8][400/1609]	Time 0.477 (0.515)	Data 0.0006 (0.0283)	Xent 0.1256 (0.1017)	Htri 0.0253 (0.0099)	Acc 99.22 (98.06)	
Epoch: [8][500/1609]	Time 0.491 (0.510)	Data 0.0009 (0.0228)	Xent 0.1538 (0.1026)	Htri 0.0080 (0.0105)	Acc 96.09 (98.08)	
Epoch: [8][600/1609]	Time 0.474 (0.506)	Data 0.0008 (0.0192)	Xent 0.1723 (0.1070)	Htri 0.0183 (0.0113)	Acc 96.88 (97.98)	
Epoch: [8][700/1609]	Time 0.467 (0.504)	Data 0.0006 (0.0166)	Xent 0.2116 (0.1138)	Htri 0.0284 (0.0128)	Acc 94.53 (97.83)	
Epoch: [8][800/1609]	Time 0.476 (0.502)	Data 0.0007 (0.0151)	Xent 0.1798 (0.1174)	Htri 0.0219 (0.0136)	Acc 95.31 (97.73)	
Epoch: [8][900/1609]	Time 0.490 (0.507)	Data 0.0008 (0.0195)	Xent 0.1005 (0.1194)	Htri 0.0300 (0.0144)	Acc 98.44 (97.66)	
Epoch: [8][1000/1609]	Time 0.477 (0.506)	Data 0.0011 (0.0190)	Xent 0.0948 (0.1220)	Htri 0.0218 (0.0145)	Acc 97.66 (97.58)	
Epoch: [8][1100/1609]	Time 0.486 (0.505)	Data 0.0008 (0.0178)	Xent 0.1707 (0.1233)	Htri 0.0000 (0.0145)	Acc 97.66 (97.55)	
Epoch: [8][1200/1609]	Time 0.482 (0.505)	Data 0.0005 (0.0181)	Xent 0.0493 (0.1213)	Htri 0.0141 (0.0140)	Acc 100.00 (97.60)	
Epoch: [8][1300/1609]	Time 0.489 (0.504)	Data 0.0008 (0.0168)	Xent 0.0993 (0.1189)	Htri 0.0000 (0.0135)	Acc 96.88 (97.65)	
Epoch: [8][1400/1609]	Time 0.487 (0.503)	Data 0.0006 (0.0164)	Xent 0.1146 (0.1171)	Htri 0.0342 (0.0133)	Acc 96.88 (97.69)	
Epoch: [8][1500/1609]	Time 0.482 (0.504)	Data 0.0008 (0.0167)	Xent 0.1066 (0.1172)	Htri 0.0000 (0.0133)	Acc 98.44 (97.70)	
Epoch: [8][1600/1609]	Time 0.482 (0.505)	Data 0.0008 (0.0180)	Xent 0.1300 (0.1160)	Htri 0.0093 (0.0131)	Acc 96.88 (97.73)	
=> Validation
Evaluating Aic ...
Extracted features for query set, obtained 3028-by-2048 matrix
Extracted features for gallery set, obtained 20494-by-2048 matrix
=> BatchTime(s)/BatchSize(img): 0.063/256
Computing CMC and mAP
Results ----------
mAP: 19.4%
CMC curve
Rank-1  : 34.2%
Rank-5  : 46.0%
Rank-10 : 51.3%
Rank-20 : 56.7%
------------------
Checkpoint saved to "/output/models/resnet101-Aic/model.pth.tar-8"
Epoch: [9][100/1609]	Time 0.473 (0.508)	Data 0.0008 (0.0218)	Xent 0.0968 (0.1007)	Htri 0.0000 (0.0136)	Acc 97.66 (98.18)	
Epoch: [9][200/1609]	Time 0.479 (0.497)	Data 0.0009 (0.0113)	Xent 0.0776 (0.1053)	Htri 0.0222 (0.0130)	Acc 97.66 (98.03)	
Epoch: [9][300/1609]	Time 0.497 (0.494)	Data 0.0007 (0.0079)	Xent 0.0915 (0.1062)	Htri 0.0000 (0.0135)	Acc 100.00 (98.10)	
Epoch: [9][400/1609]	Time 0.481 (0.508)	Data 0.0007 (0.0215)	Xent 0.0957 (0.1061)	Htri 0.0727 (0.0124)	Acc 97.66 (98.08)	
Epoch: [9][500/1609]	Time 0.481 (0.529)	Data 0.0006 (0.0424)	Xent 0.0862 (0.1057)	Htri 0.0145 (0.0122)	Acc 99.22 (98.06)	
Epoch: [9][600/1609]	Time 0.516 (0.531)	Data 0.0235 (0.0439)	Xent 0.1029 (0.1085)	Htri 0.0091 (0.0128)	Acc 96.88 (97.99)	
Epoch: [9][700/1609]	Time 0.482 (0.543)	Data 0.0009 (0.0560)	Xent 0.1049 (0.1077)	Htri 0.0000 (0.0122)	Acc 98.44 (98.01)	
Epoch: [9][800/1609]	Time 0.479 (0.543)	Data 0.0005 (0.0562)	Xent 0.1502 (0.1066)	Htri 0.0000 (0.0116)	Acc 98.44 (98.02)	
Epoch: [9][900/1609]	Time 0.487 (0.545)	Data 0.0005 (0.0587)	Xent 0.0813 (0.1068)	Htri 0.0000 (0.0119)	Acc 97.66 (98.03)	
Epoch: [9][1000/1609]	Time 0.483 (0.551)	Data 0.0008 (0.0638)	Xent 0.1831 (0.1103)	Htri 0.0475 (0.0126)	Acc 97.66 (97.94)	
Epoch: [9][1100/1609]	Time 0.488 (0.555)	Data 0.0007 (0.0681)	Xent 0.1301 (0.1130)	Htri 0.0000 (0.0129)	Acc 96.09 (97.87)	
Epoch: [9][1200/1609]	Time 0.478 (0.562)	Data 0.0007 (0.0754)	Xent 0.1528 (0.1153)	Htri 0.0045 (0.0133)	Acc 94.53 (97.80)	
Epoch: [9][1300/1609]	Time 0.484 (0.567)	Data 0.0007 (0.0809)	Xent 0.0579 (0.1145)	Htri 0.0000 (0.0130)	Acc 99.22 (97.81)	
Epoch: [9][1400/1609]	Time 0.505 (0.575)	Data 0.0008 (0.0889)	Xent 0.1193 (0.1132)	Htri 0.0000 (0.0128)	Acc 96.88 (97.83)	
Epoch: [9][1500/1609]	Time 0.476 (0.582)	Data 0.0005 (0.0953)	Xent 0.0750 (0.1127)	Htri 0.0000 (0.0126)	Acc 99.22 (97.84)	
Epoch: [9][1600/1609]	Time 0.476 (0.585)	Data 0.0009 (0.0990)	Xent 0.0740 (0.1121)	Htri 0.0000 (0.0124)	Acc 98.44 (97.85)	
=> Validation
Evaluating Aic ...
Extracted features for query set, obtained 3028-by-2048 matrix
Extracted features for gallery set, obtained 20494-by-2048 matrix
=> BatchTime(s)/BatchSize(img): 0.060/256
Computing CMC and mAP
Results ----------
mAP: 20.4%
CMC curve
Rank-1  : 34.9%
Rank-5  : 46.9%
Rank-10 : 54.2%
Rank-20 : 59.1%
------------------
Checkpoint saved to "/output/models/resnet101-Aic/model.pth.tar-9"

Hi, Hanwen. Thanks for providing the training log! Hmm, that's strange then. I do not think the mean&std or training batch&learning rate will influence the model that large.
Since we did not preserve the log files after the challenge, I will go through it again and compare it with your log.

Hi, Hanwen. Sorry for the late reply. I find out the reason. The linked model is our submission model which is trained on trn+val.
The data set will then be:

  **************** Summary ****************
  train names      : ['Aic']
  # train datasets : 1
  # train ids      : 666
  # train images   : 226553
  # train cameras  : 40
  test names       : Aic
  *****************************************

Sorry for the misunderstanding. I will update it in the ReadMe doc.

Wow. Thanks for your reply. I will try. Thanks for help me out

I have added a notice in the ReadMe doc. Please let me know if u can reproduce the results then.

No problem. I will let you know as soon as I make it

I have added a notice in the ReadMe doc. Please let me know if u can reproduce the results then.

Hi Kevin. Thank you for your help. This time it seems much better. At the 9th epoch, I achieve

mAP: 77.3%
CMC curve
Rank-1  : 88.9%
Rank-5  : 93.1%
Rank-10 : 95.6%
Rank-20 : 96.9%

Looks pretty close it shown in the ReadMe. But after epoch 10 or 11, the scores seem higher. Why did you decide to use weights pth.tar-9, rather than like tar-11?

Hi, Hanwen. That's because we fix the epoch through the experience we gained in trn/val experiments for the final submission model.