LARS-research/RED-GNN

Performance gap on nell dataset

Closed this issue · 2 comments

Hello. Thank you for your work. I have a question about the performance. The hardware environment is RTX3090. On nell dataset, the inductive performance of v4 is very poor. I can't figure it out.
nell V2 BEST:[TEST] MRR:0.3906 H@1:0.2989 H@10:0.5690
nell V3 BEST:[TEST] MRR:0.4039 H@1:0.3065 H@10:0.5827
nell V4 BEST:[TEST] MRR:0.1768 H@1:0.1213 H@10:0.2761
The output of nell v4 inductive experiment is as follows:

n_train: 1752 n_valid: 1063 n_test: 1882
0.0005, 1.0000, 0.000398,  16, 5, 5, 20, 0.1472,tanh

0	[VALID] MRR:0.0529 H@1:0.0236 H@10:0.1038	 [TEST] MRR:0.0546 H@1:0.0187 H@10:0.1154 	[TIME] train:12.9177 inference:9.9888

1	[VALID] MRR:0.1067 H@1:0.0536 H@10:0.2001	 [TEST] MRR:0.1085 H@1:0.0439 H@10:0.2668 	[TIME] train:25.6865 inference:10.7422

2	[VALID] MRR:0.1485 H@1:0.0877 H@10:0.2543	 [TEST] MRR:0.2202 H@1:0.1299 H@10:0.4171 	[TIME] train:39.1507 inference:10.6362

3	[VALID] MRR:0.1674 H@1:0.0963 H@10:0.3097	 [TEST] MRR:0.3057 H@1:0.2122 H@10:0.4872 	[TIME] train:51.4868 inference:9.4114

4	[VALID] MRR:0.1862 H@1:0.1061 H@10:0.3552	 [TEST] MRR:0.3245 H@1:0.2298 H@10:0.5028 	[TIME] train:63.3683 inference:9.3812

5	[VALID] MRR:0.1999 H@1:0.1107 H@10:0.3968	 [TEST] MRR:0.3343 H@1:0.2426 H@10:0.5069 	[TIME] train:75.2433 inference:9.4468

6	[VALID] MRR:0.2162 H@1:0.1217 H@10:0.4204	 [TEST] MRR:0.3363 H@1:0.2481 H@10:0.5062 	[TIME] train:87.1026 inference:9.5270

7	[VALID] MRR:0.2279 H@1:0.1240 H@10:0.4400	 [TEST] MRR:0.3371 H@1:0.2488 H@10:0.5062 	[TIME] train:98.9746 inference:9.5352

8	[VALID] MRR:0.2396 H@1:0.1378 H@10:0.4458	 [TEST] MRR:0.3364 H@1:0.2478 H@10:0.5062 	[TIME] train:110.8165 inference:9.4535

9	[VALID] MRR:0.2524 H@1:0.1476 H@10:0.4608	 [TEST] MRR:0.3302 H@1:0.2391 H@10:0.5014 	[TIME] train:122.7399 inference:9.6338

10	[VALID] MRR:0.2572 H@1:0.1471 H@10:0.4746	 [TEST] MRR:0.3192 H@1:0.2294 H@10:0.4855 	[TIME] train:134.6518 inference:9.5855

11	[VALID] MRR:0.2810 H@1:0.1845 H@10:0.4781	 [TEST] MRR:0.3100 H@1:0.2129 H@10:0.4820 	[TIME] train:146.5643 inference:9.6225

12	[VALID] MRR:0.2904 H@1:0.1926 H@10:0.4792	 [TEST] MRR:0.2917 H@1:0.1966 H@10:0.4630 	[TIME] train:158.4607 inference:9.6154

13	[VALID] MRR:0.2982 H@1:0.2018 H@10:0.4879	 [TEST] MRR:0.2807 H@1:0.1938 H@10:0.4406 	[TIME] train:170.4131 inference:9.6089

14	[VALID] MRR:0.3035 H@1:0.2070 H@10:0.4879	 [TEST] MRR:0.2672 H@1:0.1869 H@10:0.4160 	[TIME] train:182.3094 inference:9.3736

15	[VALID] MRR:0.3106 H@1:0.2157 H@10:0.4948	 [TEST] MRR:0.2453 H@1:0.1735 H@10:0.3735 	[TIME] train:194.2673 inference:9.3673

16	[VALID] MRR:0.3173 H@1:0.2243 H@10:0.5006	 [TEST] MRR:0.2345 H@1:0.1704 H@10:0.3490 	[TIME] train:206.1473 inference:9.4422

17	[VALID] MRR:0.3207 H@1:0.2272 H@10:0.4983	 [TEST] MRR:0.2299 H@1:0.1666 H@10:0.3431 	[TIME] train:217.9668 inference:9.3241

18	[VALID] MRR:0.3251 H@1:0.2336 H@10:0.5029	 [TEST] MRR:0.2308 H@1:0.1641 H@10:0.3504 	[TIME] train:229.8867 inference:9.3705

19	[VALID] MRR:0.3308 H@1:0.2399 H@10:0.4994	 [TEST] MRR:0.2269 H@1:0.1652 H@10:0.3366 	[TIME] train:241.8563 inference:9.3745

20	[VALID] MRR:0.3314 H@1:0.2388 H@10:0.5104	 [TEST] MRR:0.2253 H@1:0.1624 H@10:0.3383 	[TIME] train:253.7770 inference:9.4537

21	[VALID] MRR:0.3356 H@1:0.2434 H@10:0.5092	 [TEST] MRR:0.2157 H@1:0.1520 H@10:0.3321 	[TIME] train:265.5326 inference:9.4283

22	[VALID] MRR:0.3387 H@1:0.2491 H@10:0.5110	 [TEST] MRR:0.2175 H@1:0.1517 H@10:0.3338 	[TIME] train:277.5382 inference:9.3782

23	[VALID] MRR:0.3444 H@1:0.2566 H@10:0.5156	 [TEST] MRR:0.2137 H@1:0.1472 H@10:0.3310 	[TIME] train:289.4781 inference:9.4062

25	[VALID] MRR:0.3463 H@1:0.2561 H@10:0.5185	 [TEST] MRR:0.2082 H@1:0.1413 H@10:0.3328 	[TIME] train:313.3938 inference:10.3590

26	[VALID] MRR:0.3487 H@1:0.2578 H@10:0.5265	 [TEST] MRR:0.2012 H@1:0.1330 H@10:0.3262 	[TIME] train:326.0800 inference:9.3745

27	[VALID] MRR:0.3528 H@1:0.2670 H@10:0.5248	 [TEST] MRR:0.2028 H@1:0.1368 H@10:0.3238 	[TIME] train:338.0613 inference:9.4322

30	[VALID] MRR:0.3538 H@1:0.2659 H@10:0.5311	 [TEST] MRR:0.1960 H@1:0.1320 H@10:0.3169 	[TIME] train:374.4753 inference:9.8614

33	[VALID] MRR:0.3569 H@1:0.2659 H@10:0.5317	 [TEST] MRR:0.1993 H@1:0.1348 H@10:0.3269 	[TIME] train:410.9307 inference:9.3776

36	[VALID] MRR:0.3585 H@1:0.2670 H@10:0.5358	 [TEST] MRR:0.1953 H@1:0.1317 H@10:0.3169 	[TIME] train:446.7413 inference:9.3202

37	[VALID] MRR:0.3591 H@1:0.2641 H@10:0.5363	 [TEST] MRR:0.1929 H@1:0.1285 H@10:0.3120 	[TIME] train:458.6029 inference:9.2554

38	[VALID] MRR:0.3597 H@1:0.2641 H@10:0.5404	 [TEST] MRR:0.1909 H@1:0.1282 H@10:0.3075 	[TIME] train:470.4032 inference:9.3962

40	[VALID] MRR:0.3629 H@1:0.2693 H@10:0.5369	 [TEST] MRR:0.1839 H@1:0.1202 H@10:0.3058 	[TIME] train:494.1581 inference:9.3678

42	[VALID] MRR:0.3652 H@1:0.2705 H@10:0.5409	 [TEST] MRR:0.1867 H@1:0.1240 H@10:0.3013 	[TIME] train:517.8739 inference:9.4638

43	[VALID] MRR:0.3655 H@1:0.2705 H@10:0.5502	 [TEST] MRR:0.1829 H@1:0.1192 H@10:0.2982 	[TIME] train:529.7134 inference:9.4103

44	[VALID] MRR:0.3674 H@1:0.2722 H@10:0.5479	 [TEST] MRR:0.1775 H@1:0.1151 H@10:0.2892 	[TIME] train:541.5437 inference:9.3675

46	[VALID] MRR:0.3709 H@1:0.2785 H@10:0.5490	 [TEST] MRR:0.1780 H@1:0.1196 H@10:0.2813 	[TIME] train:565.4286 inference:9.5164

47	[VALID] MRR:0.3715 H@1:0.2797 H@10:0.5427	 [TEST] MRR:0.1797 H@1:0.1216 H@10:0.2813 	[TIME] train:577.3102 inference:9.4576

49	[VALID] MRR:0.3756 H@1:0.2814 H@10:0.5519	 [TEST] MRR:0.1768 H@1:0.1213 H@10:0.2761 	[TIME] train:601.0566 inference:9.3577

BEST:[VALID] MRR:0.3756 H@1:0.2814 H@10:0.5519	 [TEST] MRR:0.1768 H@1:0.1213 H@10:0.2761 	[TIME] train:601.0566 inference:9.3577

And I would like to ask why most of the results of my experiments have a difference of about 0.03. Such as:
FB15K-237 V2[TEST] MRR:0.4435 (-0.025) H@1:0.3474 (-0.034) H@10:0.6156(-0.013)
nell V2[TEST] MRR:0.3906(0.028) H@1:0.2989 (-0.020) H@10:0.5690(-0.032)

I would appreciate it if you could give me some ideas. Sorry for taking up your time.

Hello, thank you for your interest. The NELL dataset is not as stable as the other two. Since we have adjusted the code, the original hyperparameters may not be very suitable. You can try to adjust the hyperparameters by tools like hyperopt.

Thank you for your advice. I will try.