Lednik7/CLIP-ONNX

Can't use CUDAExecutionProvider

YoadTew opened this issue · 14 comments

Hey, I'm trying to use the code on GPU and I encountered 2 problems:

  1. when running pip install git+https://github.com/Lednik7/CLIP-ONNX.git I got the following error (tried on multiple machines):
    ERROR: Could not find a version that satisfies the requirement torch==1.10.0+cu111 (from clip-onnx)

I fixed it by installing that version of torch by myself. with pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html, and then running the rest of the installation.

  1. After I installed the package, I tried to run the example in the readme with CPUExecutionProvider and it worked fine, but when I'm trying to run it on GPU with CUDAExecutionProvider I get the following error message (again on different machines):

2022-01-31 20:57:03.234399301 [W:onnxruntime:Default, onnxruntime_pybind_state.cc:535 CreateExecutionProviderInstance] Failed to create CUDAExecutionProvider. Please reference https://onnxruntime.ai/docs/reference/execution-providers/CUDA-ExecutionProvider.html#requirements to ensure all dependencies are met.
2022-01-31 20:57:03.872349008 [W:onnxruntime:Default, onnxruntime_pybind_state.cc:535 CreateExecutionProviderInstance] Failed to create CUDAExecutionProvider. Please reference https://onnxruntime.ai/docs/reference/execution-providers/CUDA-ExecutionProvider.html#requirements to ensure all dependencies are met.

I can't figure out what is the problem. Any help?

Hi @YoadTew! Thank you for using my library. Have you looked at the examples folder? In order to use ONNX together with the GPU, you must run follow code block.

!pip install onnxruntime-gpu

Check the functionality of the module.

import onnxruntime
print(onnxruntime.get_device()) # return "GPU"

After these steps, please restart your runtime. I think it can help you.

Hey @Lednik7, Thank you for responding, I have looked at the exmaples folder and ran all those steps.

Running

import onnxruntime
print(onnxruntime.get_device()) # return "GPU"

Does returns "GPU" for me, but still I have the same problem I described earlier. I also restarted my machine to make sure.

@YoadTew Can I find out what configuration you are working on? In what environment?

@Lednik7 I'm working with ubuntu 20.04 in a new conda environment with python 3.8. The only packages I installed are the ones required by this repo.

Here is the output of !nvidia-smi :

| NVIDIA-SMI 495.29.05    Driver Version: 495.29.05    CUDA Version: 11.5     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA TITAN Xp     On   | 00000000:05:00.0 Off |                  N/A |
| 23%   35C    P8     9W / 250W |    240MiB / 12188MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   1  NVIDIA TITAN Xp     On   | 00000000:06:00.0 Off |                  N/A |
| 23%   34C    P8     9W / 250W |      8MiB / 12196MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   2  NVIDIA TITAN Xp     On   | 00000000:09:00.0 Off |                  N/A |
| 23%   29C    P8     9W / 250W |      8MiB / 12196MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   3  NVIDIA TITAN Xp     On   | 00000000:0A:00.0 Off |                  N/A |
| 23%   30C    P8     9W / 250W |      8MiB / 12196MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

Here is the out of pip freeze:

argon2-cffi==21.3.0
argon2-cffi-bindings==21.2.0
asttokens==2.0.5
attrs==21.4.0
backcall==0.2.0
black==22.1.0
bleach==4.1.0
certifi==2021.10.8
cffi==1.15.0
click==8.0.3
clip @ git+https://github.com/openai/CLIP.git@40f5484c1c74edd83cb9cf687c6ab92b28d8b656
clip-onnx @ git+https://github.com/Lednik7/CLIP-ONNX.git@75849c29c781554d01f87391dd5e6a7cca3e4ac1
debugpy==1.5.1
decorator==5.1.1
defusedxml==0.7.1
entrypoints==0.3
executing==0.8.2
flatbuffers==2.0
ftfy==6.0.3
importlib-resources==5.4.0
ipykernel==6.7.0
ipython==8.0.1
ipython-genutils==0.2.0
jedi==0.18.1
Jinja2==3.0.3
jsonschema==4.4.0
jupyter-client==7.1.2
jupyter-core==4.9.1
jupyterlab-pygments==0.1.2
MarkupSafe==2.0.1
matplotlib-inline==0.1.3
mistune==0.8.4
mypy-extensions==0.4.3
nbclient==0.5.10
nbconvert==6.4.1
nbformat==5.1.3
nest-asyncio==1.5.4
notebook==6.4.8
numpy==1.22.1
onnx==1.10.2
onnxruntime==1.10.0
onnxruntime-gpu==1.10.0
packaging==21.3
pandocfilters==1.5.0
parso==0.8.3
pathspec==0.9.0
pexpect==4.8.0
pickleshare==0.7.5
Pillow==9.0.0
platformdirs==2.4.1
prometheus-client==0.13.1
prompt-toolkit==3.0.26
protobuf==3.19.4
ptyprocess==0.7.0
pure-eval==0.2.2
pycparser==2.21
Pygments==2.11.2
pyparsing==3.0.7
pyrsistent==0.18.1
python-dateutil==2.8.2
pyzmq==22.3.0
regex==2022.1.18
Send2Trash==1.8.0
six==1.16.0
stack-data==0.1.4
terminado==0.13.1
testpath==0.5.0
tomli==2.0.0
torch==1.10.2
torchvision==0.11.3
tornado==6.1
tqdm==4.62.3
traitlets==5.1.1
typing_extensions==4.0.1
wcwidth==0.2.5
webencodings==0.5.1
zipp==3.7.0

Do you need anything else?

@YoadTew Try installing and running the example again with

os.environ["CUDA_VISIBLE_DEVICES"] = "0"

I want to find out is this a cluster work problem or not

@Lednik7 It doesn't seem to help. The same problem also happens when I use my own pc with ubuntu 20.04 and a single rtx 3070:

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.91.03    Driver Version: 460.91.03    CUDA Version: 11.2     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  GeForce RTX 3070    Off  | 00000000:07:00.0  On |                  N/A |
|  0%   38C    P8    20W / 240W |    342MiB /  7973MiB |      9%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

@YoadTew Try to run an example of conversion and launch from here https://catboost.ai/en/docs/concepts/apply-onnx-ml together with CUDAExecutionProvider

@YoadTew Did you manage to start or have problems installing catboost? I asked to run to check if onnxruntime-gpu works

I am having the same problem

Error message:

$ CUDA_VISIBLE_DEVICES=0 python script.py
2022-02-08 07:41:18.681109642 [W:onnxruntime:Default, onnxruntime_pybind_state.cc:509 CreateExecutionProviderInstance] Failed to create TensorrtExecutionProvider. Please referen
ce https://onnxruntime.ai/docs/execution-providers/TensorRT-ExecutionProvider.html#requirements to ensure all dependencies are met.
2022-02-08 07:41:18.681124990 [W:onnxruntime:Default, onnxruntime_pybind_state.cc:535 CreateExecutionProviderInstance] Failed to create CUDAExecutionProvider. Please reference h
ttps://onnxruntime.ai/docs/reference/execution-providers/CUDA-ExecutionProvider.html#requirements to ensure all dependencies are met.

CUDA versions:

$ nvidia-smi
Tue Feb  8 07:46:15 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 495.29.05    Driver Version: 495.29.05    CUDA Version: 11.5     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  On   | 00000000:01:00.0 Off |                  N/A |
|  0%   39C    P8    43W / 390W |      1MiB / 24268MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   1  NVIDIA GeForce ...  On   | 00000000:02:00.0 Off |                  N/A |
|  0%   37C    P8    38W / 390W |      1MiB / 24268MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

onnx versions:

$ conda list onnx
# packages in environment at /home/***/miniconda3/envs/***:
#
# Name                    Version                   Build  Channel
onnx                      1.10.2                   pypi_0    pypi
onnxruntime-gpu           1.10.0                   pypi_0    pypi

Verifying onnxruntime can get GPU:

$ python
Python 3.9.7 (default, Sep 16 2021, 13:09:58)
[GCC 7.5.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import onnxruntime
>>> print(onnxruntime.get_device())
GPU

Here is what I get when going through the first catboost example:

$ python
Python 3.9.7 (default, Sep 16 2021, 13:09:58)
[GCC 7.5.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import catboost
>>> from sklearn import datasets
>>> breast_cancer = datasets.load_breast_cancer()
>>> model = catboost.CatBoostClassifier(loss_function='Logloss')
>>> model.fit(breast_cancer.data, breast_cancer.target)
Learning rate set to 0.008098
0:      learn: 0.6787961        total: 48.4ms   remaining: 48.3s
[...]
999:    learn: 0.0100949        total: 750ms    remaining: 0us
<catboost.core.CatBoostClassifier object at 0x7f26d1dc19d0>
>>> model.save_model(
...     "breast_cancer.onnx",
...     format="onnx",
...     export_parameters={
...         'onnx_domain': 'ai.catboost',
...         'onnx_model_version': 1,
...         'onnx_doc_string': 'test model for BinaryClassification',
...         'onnx_graph_name': 'CatBoostModel_for_BinaryClassification'
...     }
... )
>>> import numpy as np
>>> from sklearn import datasets
>>> import onnxruntime as rt
>>> breast_cancer = datasets.load_breast_cancer()
>>>
>>> sess = rt.InferenceSession('breast_cancer.onnx')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/home/**/miniconda3/envs/***/lib/python3.9/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py", line 335, in __init__
    self._create_inference_session(providers, provider_options, disabled_optimizers)
  File "/home/***/miniconda3/envs/***/lib/python3.9/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py", line 361, in _create_inference_session
    raise ValueError("This ORT build has {} enabled. ".format(available_providers) +
ValueError: This ORT build has ['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'] enabled. Since ORT 1.9, you are required to explicitly set the providers parameter when instantiating InferenceSession. For example, onnxruntime.InferenceSession(..., providers=['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'], ...)
>>>
>>> sess = rt.InferenceSession('breast_cancer.onnx', providers=['TensorrtExecutionProvider', 'CUDAExecutionProvider'])
2022-02-08 08:06:46.093924754 [W:onnxruntime:Default, onnxruntime_pybind_state.cc:509 CreateExecutionProviderInstance] Failed to create TensorrtExecutionProvider. Please reference https://onnxruntime.ai/docs/execution-providers/TensorRT-ExecutionProvider.html#requirements to ensure all dependencies are met.
2022-02-08 08:06:46.093945737 [W:onnxruntime:Default, onnxruntime_pybind_state.cc:535 CreateExecutionProviderInstance] Failed to create CUDAExecutionProvider. Please reference https://onnxruntime.ai/docs/reference/execution-providers/CUDA-ExecutionProvider.html#requirements to ensure all dependencies are met.
>>>
>>> sess = rt.InferenceSession('breast_cancer.onnx', providers=['CUDAExecutionProvider'])
2022-02-08 08:07:48.538600177 [W:onnxruntime:Default, onnxruntime_pybind_state.cc:535 CreateExecutionProviderInstance] Failed to create CUDAExecutionProvider. Please reference https://onnxruntime.ai/docs/reference/execution-providers/CUDA-ExecutionProvider.html#requirements to ensure all dependencies are met.

Looking closer at the onnxruntime compatibility, I noticed that onnx 1.10 actually matches with onnxruntime 1.9 (which begs the question: what does onnxruntime 1.10 match?).
So I installed the packages as suggested: pip install "onnx>=1.10,<1.11" "onnxruntime-gpu>=1.9,<1.10"
After fixing this issue, the catboost example runs correctly:

$ CUDA_VISIBLE_DEVICES=0 python
Python 3.9.7 (default, Sep 16 2021, 13:09:58)
[GCC 7.5.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy as np
>>> from sklearn import datasets
>>> import onnxruntime as rt
>>> breast_cancer = datasets.load_breast_cancer()
>>> sess = rt.InferenceSession('breast_cancer.onnx')
/home/***/miniconda3/envs/***/lib/python3.9/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:350: UserWarning: Deprecation warning. This ORT build has ['CUDAExecutionProvider', 'CPUExecutionProvider'] enabled. The next release (ORT 1.10) will require explicitly setting the providers parameter (as opposed to the current behavior of providers getting set/registered by default based on the build flags) when instantiating InferenceSession.For example, onnxruntime.InferenceSession(..., providers=["CUDAExecutionProvider"], ...)
  warnings.warn("Deprecation warning. This ORT build has {} enabled. ".format(available_providers) +
>>> probabilities = sess.run(['probabilities'],
...                          {'features': breast_cancer.data.astype(np.float32)})
>>>

This appears to be a simple version mismatch problem. But it seems unexpected that such problems should arise when I installed my packages with pip install onnx>=1.9.0 onnxruntime-gpu originally.

Thank you @GuillaumeTong for the tests. It turns out now everything works for you?

@Lednik7 Yes, correct

for anyone else having a similar issue and using Torch. Ensuring Torch is imported before onnxruntime solved my issue
ie replace

import onnxruntime as rt
import torch

with:

import torch
import onnxruntime as rt