A Keras implementation of YOLOv3 (Tensorflow backend) inspired by allanzelener/YAD2K and qqwweee/keras-yolo3
- Download YOLOv3 weights from YOLO website.
- Convert the Darknet YOLO model to a Keras model.
- Run YOLO detection.
wget https://pjreddie.com/media/files/yolov3.weights
python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5
# yolo.h5 is the netwoerk parameter
- Generate your own annotation file and class names file.
One row for one image;
Row format: image_file_path box1 box2 ... boxN;
Box format: x_min,y_min,x_max,y_max,class_id (no space).
For VOC dataset, trypython voc_annotation.py
- download backend from below and place yolo_weights.h5 in model_data folder https://drive.google.com/drive/u/2/folders/1Qj46bDCBWMbIXm7rPZCIjCVIczxaj2l_
- Modify train.py and start training.
python train.py
You will get the trained model model_data/my_yolo.h5.
- install python3 and some library(recommend through virtualenv)
pip install -r requirements.txt
- install mongodb
start three terminal and run the next command.
$ monogod
$ cd Visual
$ python3 manage.py runserver 8000
$ python3 ui.py
Wish you enjoy it!