Error when fine tune new dataset
lethanhson9901 opened this issue · 2 comments
Hi, I'm preprocess like your pipeline. But when I run fine tune code. I got error:
checkpoints directory : small_cp_hifigan
/usr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader.py:477: UserWarning: This DataLoader will create 8 worker processes in total. Our suggested max number of worker in current system is 2, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary.
cpuset_checked))
2021-06-18 07:29:10.395782: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
Epoch: 1
/usr/local/lib/python3.7/dist-packages/torch/functional.py:581: UserWarning: stft will soon require the return_complex parameter be given for real inputs, and will further require that return_complex=True in a future PyTorch release. (Triggered internally at /pytorch/aten/src/ATen/native/SpectralOps.cpp:639.)
normalized, onesided, return_complex)
/usr/local/lib/python3.7/dist-packages/torch/functional.py:581: UserWarning: stft will soon require the return_complex parameter be given for real inputs, and will further require that return_complex=True in a future PyTorch release. (Triggered internally at /pytorch/aten/src/ATen/native/SpectralOps.cpp:639.)
normalized, onesided, return_complex)
/usr/local/lib/python3.7/dist-packages/torch/functional.py:581: UserWarning: stft will soon require the return_complex parameter be given for real inputs, and will further require that return_complex=True in a future PyTorch release. (Triggered internally at /pytorch/aten/src/ATen/native/SpectralOps.cpp:639.)
normalized, onesided, return_complex)
/usr/local/lib/python3.7/dist-packages/torch/functional.py:581: UserWarning: stft will soon require the return_complex parameter be given for real inputs, and will further require that return_complex=True in a future PyTorch release. (Triggered internally at /pytorch/aten/src/ATen/native/SpectralOps.cpp:639.)
normalized, onesided, return_complex)
/usr/local/lib/python3.7/dist-packages/torch/functional.py:581: UserWarning: stft will soon require the return_complex parameter be given for real inputs, and will further require that return_complex=True in a future PyTorch release. (Triggered internally at /pytorch/aten/src/ATen/native/SpectralOps.cpp:639.)
normalized, onesided, return_complex)
/usr/local/lib/python3.7/dist-packages/torch/functional.py:581: UserWarning: stft will soon require the return_complex parameter be given for real inputs, and will further require that return_complex=True in a future PyTorch release. (Triggered internally at /pytorch/aten/src/ATen/native/SpectralOps.cpp:639.)
normalized, onesided, return_complex)
/usr/local/lib/python3.7/dist-packages/torch/functional.py:581: UserWarning: stft will soon require the return_complex parameter be given for real inputs, and will further require that return_complex=True in a future PyTorch release. (Triggered internally at /pytorch/aten/src/ATen/native/SpectralOps.cpp:639.)
normalized, onesided, return_complex)
/usr/local/lib/python3.7/dist-packages/torch/functional.py:581: UserWarning: stft will soon require the return_complex parameter be given for real inputs, and will further require that return_complex=True in a future PyTorch release. (Triggered internally at /pytorch/aten/src/ATen/native/SpectralOps.cpp:639.)
normalized, onesided, return_complex)
/usr/local/lib/python3.7/dist-packages/torch/functional.py:581: UserWarning: stft will soon require the return_complex parameter be given for real inputs, and will further require that return_complex=True in a future PyTorch release. (Triggered internally at /pytorch/aten/src/ATen/native/SpectralOps.cpp:639.)
normalized, onesided, return_complex)
Steps : 0, Gen Loss Total : 88.451, Mel-Spec. Error : 1.812, s/b : 2.910
train.py:199: UserWarning: Using a target size (torch.Size([1, 80, 305])) that is different to the input size (torch.Size([1, 80, 304])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size.
val_err_tot += F.l1_loss(y_mel, y_g_hat_mel).item()
Traceback (most recent call last):
File "train.py", line 271, in
main()
File "train.py", line 267, in main
train(0, a, h)
File "train.py", line 199, in train
val_err_tot += F.l1_loss(y_mel, y_g_hat_mel).item()
File "/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py", line 2897, in l1_loss
expanded_input, expanded_target = torch.broadcast_tensors(input, target)
File "/usr/local/lib/python3.7/dist-packages/torch/functional.py", line 74, in broadcast_tensors
return _VF.broadcast_tensors(tensors) # type: ignore
RuntimeError: The size of tensor a (304) must match the size of tensor b (305) at non-singleton dimension 2
I don't know why, maybe error when you freeze tensor. What is dimension 2 ? Help!
Thanks!
train.py:199: UserWarning: Using a target size (torch.Size([1, 80, 305])) that is different to the input size (torch.Size([1, 80, 304])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size.
Your target melspecgram of shape 1x80x305
is longer than the input melspectrogram 1x80x304
. The two should be the same size.
I've seen this error before. The problem may related to this line, which computes the length of the finetune (input) melspectrogram.
https://github.com/NTT123/vietTTS/blob/master/vietTTS/nat/gta.py#L60
For all I know, this line works correctly!
thanks!