NVIDIA/mellotron

Here's some code to start mellotron inference by calling a .py file from CLI [Docs]

mepc36 opened this issue · 0 comments

Here's some code to start mellotron inference by calling a .py file from CLI:

#!/usr/bin/env python
# coding: utf-8

# get_ipython().run_line_magic('matplotlib', 'inline')
import sys
sys.path.append('waveglow/')

import shutil
import os

import matplotlib
import matplotlib.pyplot as plt
import IPython.display as ipd

from itertools import cycle
import numpy as np
import scipy as sp
from scipy.io.wavfile import write
import pandas as pd
import librosa
import torch

from hparams import create_hparams
from model import Tacotron2, load_model
from waveglow.denoiser import Denoiser
from layers import TacotronSTFT
from data_utils import TextMelLoader, TextMelCollate
from text import cmudict, text_to_sequence
from mellotron_utils import get_data_from_musicxml

if os.path.exists('./output'):
    shutil.rmtree('./output')

os.mkdir('./output')
os.mkdir('./output/stems')
os.mkdir('./output/songs')

def panner(signal, angle):
    angle = np.radians(angle)
    left = np.sqrt(2)/2.0 * (np.cos(angle) - np.sin(angle)) * signal
    right = np.sqrt(2)/2.0 * (np.cos(angle) + np.sin(angle)) * signal
    return np.dstack((left, right))[0]

def plot_mel_f0_alignment(mel_source, mel_outputs_postnet, f0s, alignments, figsize=(16, 16)):
    fig, axes = plt.subplots(4, 1, figsize=figsize)
    axes = axes.flatten()
    axes[0].imshow(mel_source, aspect='auto', origin='bottom', interpolation='none')
    axes[1].imshow(mel_outputs_postnet, aspect='auto', origin='bottom', interpolation='none')
    axes[2].scatter(range(len(f0s)), f0s, alpha=0.5, color='red', marker='.', s=1)
    axes[2].set_xlim(0, len(f0s))
    axes[3].imshow(alignments, aspect='auto', origin='bottom', interpolation='none')
    axes[0].set_title("Source Mel")
    axes[1].set_title("Predicted Mel")
    axes[2].set_title("Source pitch contour")
    axes[3].set_title("Source rhythm")
    plt.tight_layout()

def load_mel(path):
    audio, sampling_rate = librosa.core.load(path, sr=hparams.sampling_rate)
    audio = torch.from_numpy(audio)
    if sampling_rate != hparams.sampling_rate:
        raise ValueError("{} SR doesn't match target {} SR".format(
            sampling_rate, stft.sampling_rate))
    audio_norm = audio.unsqueeze(0)
    audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
    melspec = stft.mel_spectrogram(audio_norm)
    melspec = melspec.cuda()
    return melspec

hparams = create_hparams()

stft = TacotronSTFT(hparams.filter_length, hparams.hop_length, hparams.win_length,
                    hparams.n_mel_channels, hparams.sampling_rate, hparams.mel_fmin,
                    hparams.mel_fmax)


# ## Load Models

checkpoint_path = "models/mellotron_libritts.pt"
mellotron = load_model(hparams).cuda().eval()
mellotron.load_state_dict(torch.load(checkpoint_path)['state_dict'])

waveglow_path = 'models/waveglow_256channels_universal_v5.pt'
waveglow = torch.load(waveglow_path)['model'].cuda().eval()
denoiser = Denoiser(waveglow).cuda().eval()


# ## Setup dataloaders

arpabet_dict = cmudict.CMUDict('data/cmu_dictionary')
audio_paths = 'data/examples_filelist.txt'
dataloader = TextMelLoader(audio_paths, hparams)
datacollate = TextMelCollate(1)


# ## Load data

file_idx = 0
audio_path, text, sid = dataloader.audiopaths_and_text[file_idx]

# get audio path, encoded text, pitch contour and mel for gst
text_encoded = torch.LongTensor(text_to_sequence(text, hparams.text_cleaners, arpabet_dict))[None, :].cuda()    
pitch_contour = dataloader[file_idx][3][None].cuda()
mel = load_mel(audio_path)
print(audio_path, text)

# load source data to obtain rhythm using tacotron 2 as a forced aligner
x, y = mellotron.parse_batch(datacollate([dataloader[file_idx]]))

ipd.Audio(audio_path, rate=hparams.sampling_rate)


# ## Define Speakers Set

speaker_ids = TextMelLoader("filelists/libritts_train_clean_100_audiopath_text_sid_shorterthan10s_atleast5min_train_filelist.txt", hparams).speaker_ids
speakers = pd.read_csv('filelists/libritts_speakerinfo.txt', engine='python',header=None, comment=';', sep=' *\| *', 
                       names=['ID', 'SEX', 'SUBSET', 'MINUTES', 'NAME'])
speakers['MELLOTRON_ID'] = speakers['ID'].apply(lambda x: speaker_ids[x] if x in speaker_ids else -1)
female_speakers = cycle(
    speakers.query("SEX == 'F' and MINUTES > 20 and MELLOTRON_ID >= 0")['MELLOTRON_ID'].sample(frac=1).tolist())
male_speakers = cycle(
    speakers.query("SEX == 'M' and MINUTES > 20 and MELLOTRON_ID >= 0")['MELLOTRON_ID'].sample(frac=1).tolist())


# # Style Transfer (Rhythm and Pitch Contour)

with torch.no_grad():
    # get rhythm (alignment map) using tacotron 2
    mel_outputs, mel_outputs_postnet, gate_outputs, rhythm = mellotron.forward(x)
    rhythm = rhythm.permute(1, 0, 2)

speaker_id = next(female_speakers) if np.random.randint(2) else next(male_speakers)
speaker_id = torch.LongTensor([speaker_id]).cuda()

with torch.no_grad():
    mel_outputs, mel_outputs_postnet, gate_outputs, _ = mellotron.inference_noattention(
        (text_encoded, mel, speaker_id, pitch_contour, rhythm))

plot_mel_f0_alignment(x[2].data.cpu().numpy()[0],
                      mel_outputs_postnet.data.cpu().numpy()[0],
                      pitch_contour.data.cpu().numpy()[0, 0],
                      rhythm.data.cpu().numpy()[:, 0].T)

with torch.no_grad():
    audio = denoiser(waveglow.infer(mel_outputs_postnet, sigma=0.8), 0.01)[:, 0]
ipd.Audio(audio[0].data.cpu().numpy(), rate=hparams.sampling_rate)

data = get_data_from_musicxml('data/{}'.format(sys.argv[1]), 132, convert_stress=True)
panning = {'Soprano': [-60, -30], 'Alto': [-40, -10], 'Tenor': [30, 60], 'Bass': [10, 40]}

n_speakers_per_part = 4
frequency_scaling = 0.4
n_seconds = 90
audio_stereo = np.zeros((hparams.sampling_rate*n_seconds, 2), dtype=np.float32)
for i, (part, v) in enumerate(data.items()):
    rhythm = data[part]['rhythm'].cuda()
    pitch_contour = data[part]['pitch_contour'].cuda()
    text_encoded = data[part]['text_encoded'].cuda()
    
    for k in range(n_speakers_per_part):
        pan = np.random.randint(panning[part][0], panning[part][1])
        if any(x in part.lower() for x in ('soprano', 'alto', 'female')):
            speaker_id = torch.LongTensor([next(female_speakers)]).cuda()
        else:
            speaker_id = torch.LongTensor([next(male_speakers)]).cuda()
        print("{} MellotronID {} pan {}".format(part, speaker_id.item(), pan))

        with torch.no_grad():
            mel_outputs, mel_outputs_postnet, gate_outputs, alignments_transfer = mellotron.inference_noattention(
                (text_encoded, mel, speaker_id, pitch_contour*frequency_scaling, rhythm))

            audio = denoiser(waveglow.infer(mel_outputs_postnet, sigma=0.8), 0.01)[0, 0]
            audio = audio.cpu().numpy()
            audio = panner(audio, pan)
            audio_stereo[:audio.shape[0]] += audio            
            write("./output/stems/{} {}.wav".format(part, speaker_id.item()), hparams.sampling_rate, audio)

audio_stereo = audio_stereo / np.max(np.abs(audio_stereo))
write("./output/songs/output.wav", hparams.sampling_rate, audio_stereo)
ipd.Audio([audio_stereo[:,0], audio_stereo[:,1]], rate=hparams.sampling_rate)

Here's the command I use to call it:

python inference.py haendel_hallelujah.musicxml

I basically just cannibalized the inference.ipynb file to make this. I'm calling this file from a CLI running on a GPU apportioned by AWS EC2, Linux version === Ubuntu 20.04. Hoping to save someone else some time, thanks!