/pandantic

Enriches the Pydantic BaseModel class by adding the ability to validate dataframes using the schema and custom validators of the same BaseModel class.

Primary LanguagePython

pandantic

pandantic introduces the ability to validate (pandas) DataFrames using pydantic.BaseModels. The pandantic package is using the V2 version of pydantic as it has significant improvements over its V1 versions (a performance increase up to 50 times).

First, install pandantic by using pip (or any other package managing tool).

pip install pandantic

parse_df

To validate pd.DataFrames using Pydantic BaseModels make sure to import the BaseModel class from the pandantic package.

from pandantic import BaseModel

The pandantic.BaseModel subclasses the original pydantic.BaseModel which means the pandantic.BaseModel includes all functionality from the original pydantic.BaseModel but it adds the parse_df class method which should be used to parse DataFrames.

A quick example

Enough of the talking, lets just make things easier by showing a very minor but quick example. Make sure to import the BaseModel class from pandantic and create a schema like we normally would when using pydantic.

from pydantic.types import StrictInt

from pandantic import BaseModel


class DataFrameSchema(BaseModel):
    """Example schema for testing."""

    example_str: str
    example_int: StrictInt

Let's try this schema on a simple pandas.DataFrame. Use the class method parse_df from the freshly defined DataFrameSchema and specify the dataframe that should be validated using the arguments of the method. In this example, we want to filter out the bad records (there are more options like the good old raise to raise a ValueError after validating the whole DataFrame). In this case, only the second record would be kept in the returned DataFrame.

df_invalid = pd.DataFrame(
    data={
        "example_str": ["foo", "bar", 1],
        "example_int": ["1", 2, 3.0],
    }
)

df_filtered = DataFrameSchema.parse_df(
    dataframe=df_invalid,
    errors="filter",
)

Custom validators

One of the great features of Pydantic is the ability to create custom validators. Luckily, those custom validators will also work when parsing DataFrames using pandantic. Make sure to import the original decorator from the pydantic package and keep in mind that pandantic is using the V2 of Pydantic (so field_validation it is). In the example below the BaseModel will validate the example_int field and makes sure it is an even number.

from pydantic import ValidationError, field_validator


class DataFrameSchema(BaseModel):
    """Example schema for testing."""

    example_str: str
    example_int: int

    @field_validator("example_int")
    def validate_even_integer(  # pylint: disable=invalid-name, no-self-argument
        cls, x: int
    ) -> int:
        """Example custom validator to validate if int is even."""
        if x % 2 != 0:
            raise ValidationError(f"example_int must be even, is {x}.")
        return x

By setting the errors argument to raise, the code will raise an ValueError after validating every row as the first row contains an uneven number.

example_df_invalid = pd.DataFrame(
    data={
        "example_str": ["foo", "bar", "baz"],
        "example_int": [1, 4, 12],
    }
)

df_raised_error = DataFrameSchema.parse_df(
    dataframe=example_df_invalid,
    errors="raise",
)

Special fields and types

Optional

As the DataFrame is being parsed into a dict, a None value is considered as a nan value in cases there are different values in the dict. Therefore, specifying Optional columns (where the value can be empty) can be speciyfied by using the custom pandantic.Optional type. This type is a replacement for typing.Optional.

from pandantic import BaseModel, Optional

class Model(BaseModel):
    a: Optional[int] = None
    b: int

df_example = pd.DataFrame({"a": [1, None, 2], "b": ["str", 2, 3]})

df_filtered = Model.parse_df(df_example, errors="filter", verbose=True)

Docs

Documentation can be found here