OFA-Sys/gsm8k-ScRel

the inference of OFA-Sys/gsm8k-rft-llama13b2-u13b has shape error: 13Bllama2的u13b版本推理时出现矩阵形状错误

AegeanYan opened this issue · 8 comments

There seems no people tried your 13b2-u13b version and I may be the first one. But I got 'RuntimeError: mat1 and mat2 shapes cannot be multiplied (111x5120 and 1x2560)' on my inference. While the 7b version works well.

I'm not using accelerate and your script, I'm just using it as a object of LlamaForCausalLM and using bnb quantize for inference. But i don't think that would cause problem.

import torch
import sys
import random
import numpy as np
from transformers import LlamaTokenizer, LlamaForCausalLM, BitsAndBytesConfig

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    # bnb_4bit_quant_type="fp4",
    bnb_4bit_compute_dtype=torch.bfloat16
)
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed(0)
torch.backends.cudnn.deterministic = True

device = "cuda:0"
tokenizer = LlamaTokenizer.from_pretrained("/data/haotian/RAP_tune/gsm8k-rft-llama13b2-u13b",legacy=False)
model = LlamaForCausalLM.from_pretrained(
        "/data/haotian/RAP_tune/gsm8k-rft-llama13b2-u13b",
        quantization_config=bnb_config,
        # torch_dtype=torch.float16,
        device_map="auto",
    )
model.config.pad_token_id = tokenizer.pad_token_id = 0  # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
tokens = tokenizer("her eyes are so beautiful", return_tensors='pt', padding=True).to(device)
output = model.generate(**tokens, return_dict=True)
decoded = tokenizer.batch_decode(output, skip_special_tokens=True)
print(decoded)

Here is the minimal reproduction.

Nvidia driver version: 525.125.06
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Byte Order:                      Little Endian
Address sizes:                   48 bits physical, 48 bits virtual
CPU(s):                          56
On-line CPU(s) list:             0-55
Thread(s) per core:              1
Core(s) per socket:              28
Socket(s):                       2
NUMA node(s):                    8
Vendor ID:                       AuthenticAMD
CPU family:                      25
Model:                           1
Model name:                      AMD EPYC 7453 28-Core Processor
Stepping:                        1
Frequency boost:                 enabled
CPU MHz:                         2779.099
CPU max MHz:                     2750.0000
CPU min MHz:                     1500.0000
BogoMIPS:                        5499.64
Virtualization:                  AMD-V
L1d cache:                       1.8 MiB
L1i cache:                       1.8 MiB
L2 cache:                        28 MiB
L3 cache:                        128 MiB
NUMA node0 CPU(s):               0-6
NUMA node1 CPU(s):               7-13
NUMA node2 CPU(s):               14-20
NUMA node3 CPU(s):               21-27
NUMA node4 CPU(s):               28-34
NUMA node5 CPU(s):               35-41
NUMA node6 CPU(s):               42-48
NUMA node7 CPU(s):               49-55
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Mmio stale data:   Not affected
Vulnerability Retbleed:          Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:        Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca

Versions of relevant libraries:
[pip3] numpy==1.25.2
[pip3] torch==2.0.1
[pip3] torchvision==0.15.2
[pip3] triton==2.0.0
[conda] numpy                     1.25.2                   pypi_0    pypi
[conda] torch                     2.0.1                    pypi_0    pypi
[conda] torchvision               0.15.2                   pypi_0    pypi
[conda] triton                    2.0.0                    pypi_0    pypi

my environment

What is your transformers version?

It's 4.33.2

try transformers==4.29.2

env see issue 9.

If I want to do some work with new transformer, can I just do some modify to the config to make it work. Do you know what lead to this problem?

I have no idea how it work on new version; you may train a new model based on our code.