No checkpoints saved with full finetune even when I set --save_steps
cauwulixuan opened this issue · 1 comments
cauwulixuan commented
I tried to finetune model with the following scripts:
bash scripts/run_finetune.sh
As I can see, the commands in this script was like:
#!/bin/bash
# Please run this script under ${project_id} in project directory of
# https://github.com/shizhediao/llm-ft
# COMMIT: d5fecf30ba8011067b10cf51fede53a5ab6574e4
# Parses arguments
model_name_or_path=gpt2
dataset_path=data/alpaca/train
output_dir=output_models/finetune
deepspeed_args="--master_port=11000"
while [[ $# -ge 1 ]]; do
key="$1"
case ${key} in
-m|--model_name_or_path)
model_name_or_path="$2"
shift
;;
-d|--dataset_path)
dataset_path="$2"
shift
;;
-o|--output_model_path)
output_dir="$2"
shift
;;
--deepspeed_args)
deepspeed_args="$2"
shift
;;
*)
echo "error: unknown option \"${key}\"" 1>&2
exit 1
esac
shift
done
# Finetune
exp_id=finetune
project_dir=$(cd "$(dirname $0)"/..; pwd)
log_dir=${project_dir}/log/${exp_id}
mkdir -p ${output_dir} ${log_dir}
deepspeed ${deepspeed_args} \
examples/finetune.py \
--model_name_or_path ${model_name_or_path} \
--dataset_path ${dataset_path} \
--output_dir ${output_dir} --overwrite_output_dir \
--num_train_epochs 5 \
--learning_rate 1e-4 \
--block_size 512 \
--per_device_train_batch_size 1 \
--deepspeed configs/ds_config_zero3.json \
--fp16 \
--run_name finetune \
--validation_split_percentage 0 \
--logging_steps 20 \
--do_train \
--ddp_timeout 72000 \
--save_steps 5000 \
--dataloader_num_workers 1 \
| tee ${log_dir}/train.log \
2> ${log_dir}/train.err
After finetune, I got a final pytorch_model.bin
in ${output_dir}
, no other checkpints were saved. So I was confused, what does the arg --save_steps 5000
mean in this situation. Is it normal that no checkpoints-xxx saved after every 5000 steps ?
Any suggestions would be appriciate.
research4pan commented
Thanks for your interest in LMFlow! Normally --save_steps 5000
will save a checkpoint every 5000 steps. If it is not working, you may explicitly specify --save_strategy "steps"
. Hope that can be helpful 😄