Runtime error while running 3d_ldm_tutorial.py
sinjan3101 opened this issue · 3 comments
@ericspod please have a look and let me know if I am using wrong version on any of the lib.
python3 tutorials/generative/3d_ldm/3d_ldm_tutorial.py
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (2.0.6) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "
Failed to load image Python extension: '/home/sinjan/.local/lib/python3.9/site-packages/torchvision/image.so: undefined symbol: _ZN3c104cuda9SetDeviceEi'If you don't plan on using image functionality from torchvision.io
, you can ignore this warning. Otherwise, there might be something wrong with your environment. Did you have libjpeg
or libpng
installed before building torchvision
from source?
MONAI version: 1.2.0
Numpy version: 1.26.0
Pytorch version: 2.0.1+cu117
MONAI flags: HAS_EXT = False, USE_COMPILED = False, USE_META_DICT = False
MONAI rev id: c33f1ba588ee00229a309000e888f9817b4f1934
MONAI file: /home/sinjan/.local/lib/python3.9/site-packages/monai/init.py
Optional dependencies:
Pytorch Ignite version: 0.4.10
ITK version: 5.3.0
Nibabel version: 5.1.0
scikit-image version: 0.22.0
Pillow version: 10.0.1
Tensorboard version: 2.14.1
gdown version: 4.7.1
TorchVision version: 0.16.0+cu121
tqdm version: 4.66.1
lmdb version: 1.4.1
psutil version: 5.9.5
pandas version: 2.1.1
einops version: 0.7.0
transformers version: 4.34.0
mlflow version: 2.7.1
pynrrd version: 1.0.0
For details about installing the optional dependencies, please visit:
https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies
/home/sinjan/mnai/Task01_BrainTumour/
monai.transforms.io.dictionary LoadImaged.init:image_only: Current default value of argument image_only=False
has been deprecated since version 1.1. It will be changed to image_only=True
in version 1.3.
<class 'monai.transforms.utility.dictionary.AddChanneld'>: Class AddChanneld
has been deprecated since version 0.8. It will be removed in version 1.3. please use MetaTensor data type and monai.transforms.EnsureChannelFirstd instead with channel_dim='no_channel'
.
monai.transforms.utility.dictionary EnsureChannelFirstd.init:meta_keys: Argument meta_keys
has been deprecated since version 0.9. not needed if image is type MetaTensor
.
Loading dataset: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 388/388 [03:23<00:00, 1.91it/s]
Image shape torch.Size([1, 96, 96, 64])
Using cuda
The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.
Arguments other than a weight enum or None
for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing weights=SqueezeNet1_1_Weights.IMAGENET1K_V1
. You can also use weights=SqueezeNet1_1_Weights.DEFAULT
to get the most up-to-date weights.
Epoch 0: 100%|██████████████████| 194/194 [02:02<00:00, 1.58it/s, recons_loss=0.064, gen_loss=0, disc_loss=0]
Epoch 1: 100%|█████████████████| 194/194 [01:17<00:00, 2.51it/s, recons_loss=0.0394, gen_loss=0, disc_loss=0]
Epoch 2: 100%|█████████████████| 194/194 [01:17<00:00, 2.50it/s, recons_loss=0.0343, gen_loss=0, disc_loss=0]
Epoch 3: 100%|█████████████████| 194/194 [01:17<00:00, 2.50it/s, recons_loss=0.0326, gen_loss=0, disc_loss=0]
Epoch 4: 100%|█████████████████| 194/194 [01:17<00:00, 2.49it/s, recons_loss=0.0293, gen_loss=0, disc_loss=0]
Epoch 5: 100%|█████████████████| 194/194 [01:18<00:00, 2.48it/s, recons_loss=0.0285, gen_loss=0, disc_loss=0]
Epoch 6: 100%|█████████| 194/194 [01:49<00:00, 1.77it/s, recons_loss=0.0271, gen_loss=0.475, disc_loss=0.348]
Epoch 7: 100%|█████████| 194/194 [01:47<00:00, 1.81it/s, recons_loss=0.0284, gen_loss=0.594, disc_loss=0.204]
Epoch 8: 100%|█████████| 194/194 [01:48<00:00, 1.79it/s, recons_loss=0.0296, gen_loss=0.599, disc_loss=0.212]
Epoch 9: 100%|█████████| 194/194 [01:48<00:00, 1.78it/s, recons_loss=0.0295, gen_loss=0.508, disc_loss=0.216]
Epoch 10: 100%|████████| 194/194 [01:49<00:00, 1.77it/s, recons_loss=0.0288, gen_loss=0.411, disc_loss=0.223]
Epoch 11: 100%|████████| 194/194 [01:51<00:00, 1.74it/s, recons_loss=0.0277, gen_loss=0.417, disc_loss=0.215]
Epoch 12: 100%|█████████| 194/194 [01:49<00:00, 1.77it/s, recons_loss=0.027, gen_loss=0.429, disc_loss=0.226]
Epoch 13: 100%|██████████| 194/194 [01:49<00:00, 1.77it/s, recons_loss=0.0268, gen_loss=0.4, disc_loss=0.228]
Epoch 14: 100%|█████████| 194/194 [01:50<00:00, 1.76it/s, recons_loss=0.026, gen_loss=0.385, disc_loss=0.226]
Epoch 15: 100%|████████| 194/194 [01:52<00:00, 1.72it/s, recons_loss=0.0261, gen_loss=0.387, disc_loss=0.221]
Epoch 16: 100%|████████| 194/194 [01:51<00:00, 1.74it/s, recons_loss=0.0258, gen_loss=0.394, disc_loss=0.222]
Epoch 17: 100%|█████████| 194/194 [01:53<00:00, 1.72it/s, recons_loss=0.026, gen_loss=0.385, disc_loss=0.227]
Epoch 18: 100%|████████| 194/194 [01:50<00:00, 1.75it/s, recons_loss=0.0254, gen_loss=0.383, disc_loss=0.228]
Epoch 19: 0%| | 0/194 [00:00<?, ?it/s]
Traceback (most recent call last):
File "/home/sinjan/mnai/GenerativeModels/tutorials/generative/3d_ldm/3d_ldm_tutorial.py", line 204, in
for step, batch in progress_bar:
File "/home/sinjan/.local/lib/python3.9/site-packages/tqdm/std.py", line 1182, in iter
for obj in iterable:
File "/home/sinjan/.local/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 633, in next
data = self._next_data()
File "/home/sinjan/.local/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 1328, in _next_data
idx, data = self._get_data()
File "/home/sinjan/.local/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 1294, in _get_data
success, data = self._try_get_data()
File "/home/sinjan/.local/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 1132, in _try_get_data
data = self._data_queue.get(timeout=timeout)
File "/usr/lib/python3.9/multiprocessing/queues.py", line 122, in get
return _ForkingPickler.loads(res)
File "/home/sinjan/.local/lib/python3.9/site-packages/torch/multiprocessing/reductions.py", line 307, in rebuild_storage_fd
fd = df.detach()
File "/usr/lib/python3.9/multiprocessing/resource_sharer.py", line 58, in detach
return reduction.recv_handle(conn)
File "/usr/lib/python3.9/multiprocessing/reduction.py", line 189, in recv_handle
return recvfds(s, 1)[0]
File "/usr/lib/python3.9/multiprocessing/reduction.py", line 164, in recvfds
raise RuntimeError('received %d items of ancdata' %
RuntimeError: received 0 items of ancdata
I can't say what this particular issue is but the first thing that I find online offers some solutions: https://discuss.pytorch.org/t/runtimeerror-received-0-items-of-ancdata/4999/7 I haven't seen this error before and would suspect it has to do with Pytorch only and not MONAI/Geneative.
@sinjan3101 Glad to hear it though I think this is an underlying issue with limitations set with ulimit
, however depending how your system is administered you might not be able to change these. This solution works so just stick with it.