/genann

simple neural network library in ANSI C

Primary LanguageCzlib LicenseZlib

Build Status

Genann logo

Genann

Genann is a minimal, well-tested library for training and using feedforward artificial neural networks (ANN) in C. Its primary focus is on being simple, fast, reliable, and hackable. It achieves this by providing only the necessary functions and little extra.

Genann 是一个用于在 C 语言中训练和使用前馈人工神经网络(ANN)的简约且经过充分测试的库。 它的主要关注点在于简单、快速、可靠和可定制。 它实现仅通过提供必要的功能和很少的额外内容。

Features

  • C99 with no dependencies.

  • Contained in a single source code and header file.

  • Simple.

  • Fast and thread-safe.

  • Easily extendible.

  • Implements backpropagation training.

  • Compatible with alternative training methods (classic optimization, genetic algorithms, etc)

  • Includes examples and test suite.

  • Released under the zlib license - free for nearly any use.

  • C99 无依赖

  • 包含在一个源代码文件和一个头文件中。

  • 简单。

  • 快速且线程安全。

  • 易于扩展。

  • 实现了反向传播训练。

  • 兼容其他训练方法(经典优化、遗传算法等)。

  • 包含示例和测试套件。

  • 根据 zlib 许可证发布 - 几乎可用于任何用途。

Building

Genann is self-contained in two files: genann.c and genann.h. To use Genann, simply add those two files to your project.

Genann 是自包含的,包括两个文件:genann.cgenann.h。 要使用 Genann,只需将这两个文件添加到您的项目中即可。

Building with CMake

cmake -G Ninja -B build
cmake --build build --config Release

Example Code

Four example programs are included with the source code.

源代码中包括四个示例程序。

  • example1.c - 使用反向传播训练一个人工神经网络(ANN),以学习 XOR 函数。
  • example2.c - 使用随机搜索方法训练一个 ANN,以学习 XOR 函数。
  • example3.c - 从文件中加载并运行一个 ANN。
  • example4.c - 使用反向传播在 IRIS 数据集 上训练一个 ANN。

Quick Example

We create an ANN taking 2 inputs, having 1 layer of 3 hidden neurons, and providing 2 outputs. It has the following structure:

NN Example Structure

We then train it on a set of labeled data using backpropagation and ask it to predict on a test data point:

#include "genann.h"

/* Not shown, loading your training and test data. */
double **training_data_input, **training_data_output, **test_data_input;

/* New network with 2 inputs,
 * 1 hidden layer of 3 neurons each,
 * and 2 outputs. */
genann *ann = genann_init(2, 1, 3, 2);

/* Learn on the training set. */
for (i = 0; i < 300; ++i) {
    for (j = 0; j < 100; ++j)
        genann_train(ann, training_data_input[j], training_data_output[j], 0.1);
}

/* Run the network and see what it predicts. */
double const *prediction = genann_run(ann, test_data_input[0]);
printf("Output for the first test data point is: %f, %f\n", prediction[0], prediction[1]);

genann_free(ann);

This example is to show API usage, it is not showing good machine learning techniques. In a real application you would likely want to learn on the test data in a random order. You would also want to monitor the learning to prevent over-fitting.

Usage

Creating and Freeing ANNs

genann *genann_init(int inputs, int hidden_layers, int hidden, int outputs);
genann *genann_copy(genann const *ann);
void genann_free(genann *ann);

Creating a new ANN is done with the genann_init() function. Its arguments are the number of inputs, the number of hidden layers, the number of neurons in each hidden layer, and the number of outputs. It returns a genann struct pointer.

Calling genann_copy() will create a deep-copy of an existing genann struct.

Call genann_free() when you're finished with an ANN returned by genann_init().

Training ANNs

void genann_train(genann const *ann, double const *inputs,
        double const *desired_outputs, double learning_rate);

genann_train() will preform one update using standard backpropogation. It should be called by passing in an array of inputs, an array of expected outputs, and a learning rate. See example1.c for an example of learning with backpropogation.

A primary design goal of Genann was to store all the network weights in one contigious block of memory. This makes it easy and efficient to train the network weights using direct-search numeric optimization algorthims, such as Hill Climbing, the Genetic Algorithm, Simulated Annealing, etc. These methods can be used by searching on the ANN's weights directly. Every genann struct contains the members int total_weights; and double *weight;. *weight points to an array of total_weights size which contains all weights used by the ANN. See example2.c for an example of training using random hill climbing search.

Saving and Loading ANNs

genann *genann_read(FILE *in);
void genann_write(genann const *ann, FILE *out);

Genann provides the genann_read() and genann_write() functions for loading or saving an ANN in a text-based format.

Evaluating

double const *genann_run(genann const *ann, double const *inputs);

Call genann_run() on a trained ANN to run a feed-forward pass on a given set of inputs. genann_run() will provide a pointer to the array of predicted outputs (of ann->outputs length).

Hints

  • All functions start with genann_.
  • The code is simple. Dig in and change things.

Extra Resources

The comp.ai.neural-nets FAQ is an excellent resource for an introduction to artificial neural networks.

If you need an even smaller neural network library, check out the excellent single-hidden-layer library tinn.

If you're looking for a heavier, more opinionated neural network library in C, I recommend the FANN library. Another good library is Peter van Rossum's Lightweight Neural Network, which despite its name, is heavier and has more features than Genann.