/ltp

Language Technology Platform

Primary LanguagePython

LTP VERSION CODE SIZE CONTRIBUTORS LAST COMMIT Documentation Status PyPI Downloads

LTP 4

LTP(Language Technology Platform) 提供了一系列中文自然语言处理工具,用户可以使用这些工具对于中文文本进行分词、词性标注、句法分析等等工作。

If you use any source codes included in this toolkit in your work, please kindly cite the following paper. The bibtex are listed below:

@article{che2020n,
  title={N-LTP: A Open-source Neural Chinese Language Technology Platform with Pretrained Models},
  author={Che, Wanxiang and Feng, Yunlong and Qin, Libo and Liu, Ting},
  journal={arXiv preprint arXiv:2009.11616},
  year={2020}
}

参考书: 由哈工大社会计算与信息检索研究中心(HIT-SCIR)的多位学者共同编著的《自然语言处理:基于预训练模型的方法》(作者:车万翔、郭江、崔一鸣;主审:刘挺)一书现已正式出版,该书重点介绍了新的基于预训练模型的自然语言处理技术,包括基础知识、预训练词向量和预训练模型三大部分,可供广大LTP用户学习参考。

快速使用

from ltp import LTP

ltp = LTP()     # 默认加载 Small 模型
                # ltp = LTP(path="small")
                #     其中 path 可接受的路径为下载下来的模型或者解压后的文件夹路径
                #     另外也可以接受一些已注册可自动下载的模型名(可使用 ltp.available_models() 查看): 
                #     base/base1/base2/small/tiny/GSD/GSD+CRF/GSDSimp/GSDSimp+CRF
seg, hidden = ltp.seg(["他叫汤姆去拿外衣。"])
pos = ltp.pos(hidden)
ner = ltp.ner(hidden)
srl = ltp.srl(hidden)
dep = ltp.dep(hidden)
sdp = ltp.sdp(hidden)

详细说明

Language Bindings

  • C++
  • Rust
  • Java
  • Python Rebinding

libltp

指标

模型 分词 词性 命名实体 语义角色 依存句法 语义依存 速度(句/S)
LTP 4.0 (Base) 98.7 98.5 95.4 80.6 89.5 75.2 39.12
LTP 4.0 (Base1) 99.22 98.73 96.39 79.28 89.57 76.57 --.--
LTP 4.0 (Base2) 99.18 98.69 95.97 79.49 90.19 76.62 --.--
LTP 4.0 (Small) 98.4 98.2 94.3 78.4 88.3 74.7 43.13
LTP 4.0 (Tiny) 96.8 97.1 91.6 70.9 83.8 70.1 53.22

模型下载地址

模型算法

  • 分词: Electra Small1 + Linear
  • 词性: Electra Small + Linear
  • 命名实体: Electra Small + Relative Transformer2 + Linear
  • 依存句法: Electra Small + BiAffine + Eisner3
  • 语义依存: Electra Small + BiAffine
  • 语义角色: Electra Small + BiAffine + CRF

构建 Wheel 包

python setup.py sdist bdist_wheel
python -m twine upload dist/*

作者信息

开源协议

  1. 语言技术平台面向国内外大学、中科院各研究所以及个人研究者免费开放源代码,但如上述机构和个人将该平台用于商业目的(如企业合作项目等)则需要付费。
  2. 除上述机构以外的企事业单位,如申请使用该平台,需付费。
  3. 凡涉及付费问题,请发邮件到 car@ir.hit.edu.cn 洽商。
  4. 如果您在 LTP 基础上发表论文或取得科研成果,请您在发表论文和申报成果时声明“使用了哈工大社会计算与信息检索研究中心研制的语言技术平台(LTP)”. 同时,发信给car@ir.hit.edu.cn,说明发表论文或申报成果的题目、出处等。

脚注