How to inference with bash for multi-round conversation?
TonyXuQAQ opened this issue · 2 comments
TonyXuQAQ commented
Hi, may I know how to talk with Valley for multi-conversations by bash inference? Thanks for your help!
RupertLuo commented
I have written a script for conversation inference in the shell at valey/inference/inference_valley_conv.py, but this code may be outdated. You can use the following code to rewrite it in the form of multiple rounds of dialogue by calling the api, which currently supports the format of the openai api.
from transformers import AutoTokenizer
from valley.model.valley import ValleyLlamaForCausalLM
def init_vision_token(model,tokenizer):
vision_config = model.get_model().vision_tower.config
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
vision_config.vi_start_token, vision_config.vi_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_VI_START_TOKEN, DEFAULT_VI_END_TOKEN])
vision_config.vi_frame_token = tokenizer.convert_tokens_to_ids(DEFAULT_VIDEO_FRAME_TOKEN)
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# input the query
query = "Describe the video concisely."
# input the systemprompt
system_prompt = "You are Valley, a large language and vision assistant trained by ByteDance. You are able to understand the visual content or video that the user provides, and assist the user with a variety of tasks using natural language. Follow the instructions carefully and explain your answers in detail."
model_path = THE MODEL PATH
model = ValleyLlamaForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16)
tokenizer = AutoTokenizer.from_pretrained(model_path)
init_vision_token(model,tokenizer)
model = model.to(device)
model.eval()
# we support openai format input
message = [ {"role":'system','content':system_prompt},
{"role":"user", "content": 'Hi!'},
{"role":"assistent", "content": 'Hi there! How can I help you today?'},
{"role":"user", "content": query}]
gen_kwargs = dict(
do_sample=True,
temperature=0.2,
max_new_tokens=1024,
)
response = model.completion(tokenizer, args.video_file, message, gen_kwargs, device)
TonyXuQAQ commented
Thanks for the information!