- Machine learning - steps and concepts
- Data science life cycle
- Machine learning operations (MLOps)
- Automate machine learning via FLAML
- Supervised learning (regression - classification)
- Regression (Linear, Ridge/LASSO, Polynomial, SVM, K-NN)
- Classification (K-NN, Logistic regression, SVM, Kernelized SVM, Decision Trees, Naive Bayes Classifiers,
- Ensemble models
- XGBoost
- LightGBM
- Random forest
- Un-supervised learning
- Transformation
- Dimensionality Reduction: PCA
- Manifold learning: MDS and t-NSE
- Clustering
- K-means clustering
- Agglomerative clustering
- DBSCAN
- K-mode clustering
- K-prototype clustering
- Evaluate clustering algorithm
- Transformation