May I ask how the visualization feature map of encoder discrimination score in the paper was obtained
xiaoyangbenjiance opened this issue · 2 comments
xiaoyangbenjiance commented
I would like to visualize the feature map of the feature differentiation score in my paper. I hope to receive a response. Thank you
TempleX98 commented
We have provided the details to calculate the feature discriminability score in the paper. You can follow the implementation here:
# feats: multi-scale features. LxBxCxHxW
# The batch size is 1 (B=1)
attn_map = None
for i, feat in enumerate(feats):
feat_map = torch.norm(feat[0], 2, dim=0).detach()
feat_map = feat_map.cpu().numpy()
feat_map = feat_map / np.max(feat_map)
feat_map = cv2.resize(feat_map, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_LINEAR)
if i == 0:
attn_map = feat_map
else:
attn_map += feat_map
attn_map /= len(feat)
gaowenjie-star commented
We have provided the details to calculate the feature discriminability score in the paper. You can follow the implementation here:
# feats: multi-scale features. LxBxCxHxW # The batch size is 1 (B=1) attn_map = None for i, feat in enumerate(feats): feat_map = torch.norm(feat[0], 2, dim=0).detach() feat_map = feat_map.cpu().numpy() feat_map = feat_map / np.max(feat_map) feat_map = cv2.resize(feat_map, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_LINEAR) if i == 0: attn_map = feat_map else: attn_map += feat_map attn_map /= len(feat)
您好,很感谢您的工作,我有一个问题关于multi-scale features,据我所知,deformable detr,在encoder的操作之前,会将backbone出来的特征将H,W进行合并,然后将4维的多维特征进行铺平,然后再进行后续的操作得到feature,您这里的multi-scale feature的维度是LxBxCxHxW,请问您是将后续得到的的feature进行逆操作得到的吗,还是说我的理解有问题,期待您的回复。