ValueError: Anchors should be Tuple[Tuple[int]] ... with GPU RTX 3000 series
Opened this issue · 0 comments
MounirB commented
Hello,
If I try to run test.py the pretrained_model you provided on CroHD, I am facing a problem with Anchors:
python test.py --test_dataset CroHD/test/HT21-11/img1 --plot_folder outputs --outfile outputs --pretrained_model FT_R50_epoch_24.pth --context cpm
Output, with the Traceback:
256
FT_R50_epoch_24.pth
0it [00:00, ?it/s]/mnt/sdb/anaconda3/envs/headhunter-TT/lib/python3.8/site-packages/torch/nn/functional.py:3502: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and now uses scale_factor directly, instead of relying on the computed output size. If you wish to restore the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details.
warnings.warn(
0it [00:02, ?it/s]
Traceback (most recent call last):
File "test.py", line 176, in <module>
test()
File "/mnt/sdb/anaconda3/envs/headhunter-TT/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "test.py", line 165, in test
outputs = model(images)
File "/mnt/sdb/anaconda3/envs/headhunter-TT/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/mnt/sdb/anaconda3/envs/headhunter-TT/lib/python3.8/site-packages/torchvision/models/detection/generalized_rcnn.py", line 97, in forward
proposals, proposal_losses = self.rpn(images, features, targets)
File "/mnt/sdb/anaconda3/envs/headhunter-TT/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/mnt/sdb/anaconda3/envs/headhunter-TT/lib/python3.8/site-packages/torchvision/models/detection/rpn.py", line 345, in forward
anchors = self.anchor_generator(images, features)
File "/mnt/sdb/anaconda3/envs/headhunter-TT/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/mnt/sdb/anaconda3/envs/headhunter-TT/lib/python3.8/site-packages/torchvision/models/detection/anchor_utils.py", line 150, in forward
anchors_over_all_feature_maps = self.cached_grid_anchors(grid_sizes, strides)
File "/mnt/sdb/anaconda3/envs/headhunter-TT/lib/python3.8/site-packages/torchvision/models/detection/anchor_utils.py", line 139, in cached_grid_anchors
anchors = self.grid_anchors(grid_sizes, strides)
File "/mnt/sdb/anaconda3/envs/headhunter-TT/lib/python3.8/site-packages/torchvision/models/detection/anchor_utils.py", line 103, in grid_anchors
raise ValueError("Anchors should be Tuple[Tuple[int]] because each feature "
ValueError: Anchors should be Tuple[Tuple[int]] because each feature map could potentially have different sizes and aspect ratios. There needs to be a match between the number of feature maps passed and the number of sizes / aspect ratios specified.
These are the contents of my virtual environment:
name: headhunter-TT
channels:
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- ca-certificates=2021.4.13=h06a4308_1
- certifi=2020.12.5=py38h06a4308_0
- ld_impl_linux-64=2.33.1=h53a641e_7
- libffi=3.3=he6710b0_2
- libgcc-ng=9.1.0=hdf63c60_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- ncurses=6.2=he6710b0_1
- openssl=1.1.1k=h27cfd23_0
- pip=21.1.1=py38h06a4308_0
- python=3.8.10=hdb3f193_7
- readline=8.1=h27cfd23_0
- setuptools=52.0.0=py38h06a4308_0
- sqlite=3.35.4=hdfb4753_0
- tk=8.6.10=hbc83047_0
- wheel=0.36.2=pyhd3eb1b0_0
- xz=5.2.5=h7b6447c_0
- zlib=1.2.11=h7b6447c_3
- pip:
- chardet==4.0.0
- cycler==0.10.0
- decorator==4.4.2
- h5py==3.2.1
- idna==2.10
- imageio==2.9.0
- kiwisolver==1.3.1
- matplotlib==3.4.2
- networkx==2.5.1
- numpy==1.20.3
- ordered-set==4.0.2
- pillow==8.2.0
- plyfile==0.7.4
- pyparsing==2.4.7
- python-dateutil==2.8.1
- pywavelets==1.1.1
- requests==2.25.1
- scikit-image==0.18.1
- scipy==1.6.3
- six==1.16.0
- tifffile==2021.4.8
- torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
- torchmeta==1.7.0
- torchvision==0.9.1
- tqdm==4.61.0
- trimesh==3.9.19
- typing-extensions==3.10.0.0
- urllib3==1.26.5
- munkres
- albumentations==0.5.2
- pyyaml
If I try to downgrade torch to 1.6.0 and torchvision to 0.7.0, I run through the following error:
RuntimeError: CUDA error: no kernel image is available for execution on the device
Moreover, I get this warning message if I use torch 1.6.0, when I try to get a device info via: torch.cuda.get_device_name(0)
NVIDIA GeForce RTX 3xxx with CUDA capability sm_86 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_70.