DDPG Experiment using Stable Baselines 3
This experiment attempts to learn a motion planning task for a 2 joint robotic arm using the DDPG algorithm
Setup
pipenv
should be installed to run the following instructions. Pip can be used to install these libraries to a base python environment. Make sure python 3.8 is installed on your system before using pipenv.
cd ddpg-test
git submodule update --init --recursive
pipenv shell
pipenv update --pre --clear
Enjoy pretrained model (sfujimoto TD3)
python enjoy.py
Usage sfujimoto_test
cd sfujimoto_test
# train a model
python main.py --env ReacherBulletEnv-v0 --save_model
Usage stable_baselines3_test
# train a model and view it
python ddpg-test.py
# load an already trained model
python ddpg-test.py -f my_trained_model.zip
# train a model using TD3 for 20000 timesteps and save it
python ddpg-test.py -o my_trained_model.zip -t 20000 --td3
Optional arguments:
-h, --help show this help message and exit
-f FILENAME, --file FILENAME
load model data from specified zip file
-o FILENAME, --output FILENAME
save model data to specified zip file
-t N, --timesteps N train for N timesteps
--td3 use TD3 instead of DDPG
Common Issues
If pipenv
refuses to install dependencies, they can be installed using
pipenv update --pre --skip-lock