This is the official implementation of MeshDiffusion (ICLR 2023 Spotlight).
MeshDiffusion is a diffusion model for generating 3D meshes with a direct parametrization of deep marching tetrahedra (DMTet). Please refer to our project page for more details and interactive demos.
- Python >= 3.8
- CUDA 11.6
- Pytorch >= 1.6
- Pytorch3D
Follow the instructions to install requirements for nvdiffrec
Download the model checkpoints from Google Drive.
Download our pretrained MeshDiffusion model for chair, car and airplane.
Run the following
python main_diffusion.py --config=$DIFFUSION_CONFIG --mode=uncond_gen \
--config.eval.eval_dir=$OUTPUT_PATH \
--config.eval.ckpt_path=$CKPT_PATH
Later run
cd nvdiffrec
python eval.py --config $DMTET_CONFIG --out-dir $OUT_DIR --sample-path $SAMPLE_PATH --deform-scale $DEFORM_SCALE [--angle-ind $ANGLE_INDEX]
where $SAMPLE_PATH
is the generated sample .npy
file in $OUTPUT_PATH
, and $DEFORM_SCALE
is the scale of deformation of tet vertices set for the DMTet dataset (we use 3.0 for resolution 64 as default; change the value for your own datasets). Change $ANGLE_INDEX
to some number from 0 to 50 if images rendered from different angles are desired.
A mesh file (.obj
) will be saved to the folder, which can be viewed in tools such as MeshLab. The saved images are rendered from raw meshes without post-processing and thus are used for fast sanity check only.
First fit a DMTet from a single view of a mesh positioned in its canonical pose
cd nvdiffrec
python fit_singleview.py --config $DMTET_CONFIG --mesh-path $MESH_PATH --angle-ind $ANGLE_IND --out-dir $OUT_DIR --validate $VALIDATE
where $ANGLE_IND
is an integer (0 to 50) controlling the z-axis rotation of the object. Set $VALIDATE
to 1 if visualization of fitted DMTets is needed.
Then use the trained diffusion model to complete the occluded regions
cd ..
python main_diffusion.py --mode=cond_gen --config=$DIFFUSION_CONFIG \
--config.eval.eval_dir=$EVAL_DIR \
--config.eval.ckpt_path=$CKPT_PATH \
--config.eval.partial_dmtet_path=$OUT_DIR/tets/dmtet.pt \
--config.eval.tet_path=$TET_PATH \
--config.eval.batch_size=$EVAL_BATCH_SIZE
, in which $TET_PATH
is the uniform tetrahedral grid (of resolution 64 or 128) file in nvdiffrec/data/tets
.
Now store the completed meshes as .obj
files in $SAMPLE_PATH
cd nvdiffrec
python eval.py --config $DMTET_CONFIG --sample-path $SAMPLE_PATH --deform-scale $DEFORM_SCALE
Caution: the deformation scale should be consistent for single view fitting and the diffusion model. Check before you run conditional generation.
For ShapeNet, first create a list of paths of all ground-truth meshes and store them as a json file under ./nvdiffrec/data/shapenet_json
.
Then run the following
cd nvdiffrec
python fit_dmtets.py --config $DMTET_CONFIG --out-dir $DMTET_DATA_PATH --index 0 --split-size 100000
where split_size
is set to any large number greater than the dataset size. In case of batch fitting with multiple jobs, change split_size
to a suitable number and assign a different index
for different jobs. Tune the resolutions in the 1st and 2nd pass fitting in the config file if necessary.
Create a meta file of all dmtet grid file locations for diffusion model training:
cd ../metadata/
python save_meta.py --data_path $DMTET_DATA_PATH/tets --json_path $META_FILE
Train a diffusion model
cd ..
python main_diffusion.py --mode=train --config=$DIFFUSION_CONFIG \
--config.data.meta_path=$META_FILE \
--config.data.filter_meta_path=$TRAIN_SPLIT_FILE
where $TRAIN_SPLIT_FILE
is a json list of indices to be included in the training set. Examples in metadata/train_split/
.
Follow the instructions in https://github.com/TEXTurePaper/TEXTurePaper and create text-conditioned textures for the generated meshes.
If tetrahedral grids of higher resolutions are needed, first follow the README in nvdiffrec/data/tets
and use quartet (https://github.com/crawforddoran/quartet) to generate a uniform tetrahedral grid. Then run nvdiffrec/data/tets/crop_tets.py
to remove the boundary (so that translational symmetry holds in the resulted grid).
If you find our work useful to your research, please consider citing:
@InProceedings{Liu2023MeshDiffusion,
title={MeshDiffusion: Score-based Generative 3D Mesh Modeling},
author={Zhen Liu and Yao Feng and Michael J. Black and Derek Nowrouzezahrai and Liam Paull and Weiyang Liu},
booktitle={International Conference on Learning Representations},
year={2023},
url={https://openreview.net/forum?id=0cpM2ApF9p6}
}
This repo is adapted from https://github.com/NVlabs/nvdiffrec and https://github.com/yang-song/score_sde_pytorch.