SEGY import spawns multiprocessing recursion
Closed this issue ยท 7 comments
The following code will trigger a (near) endless recursion of subprocesses, causing all the conversions to be attempted in parallel, failing all of them:
(I am not using Dask)
import os
from mdio import segy_to_mdio
input_segy = 'C:\\Demo\\Data\\ST10010ZC11_PZ_PSDM_KIRCH_FAR_D.MIG_FIN.POST_STACK.3D.JS-017536.segy'
for level in [0, 0.01, 0.02, 1.0, 10.0]:
compressed_mdio_file = os.path.join(os.path.splitext(input_segy)[0] + '_' + str(level) + '.mdio')
segy_to_mdio(segy_path=input_segy,
mdio_path_or_buffer=compressed_mdio_file,
index_bytes=(189, 193),
index_names=('inline', 'crossline'),
compression_tolerance=level,
lossless=(level == 0))
print(f'Converted {input_segy} @ {level} tolerance, to {compressed_mdio_file}')
print('Complete')
What I see is a constant looping of the following output:
C:\sources\mdio_test (main)
ฮป python mdio_test.py
Scanning SEG-Y for geometry attributes: 0%| | 0/6 [00:00<?, ?block/s]
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\spawn.py", line 116, in spawn_main
exitcode = _main(fd, parent_sentinel)
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\spawn.py", line 125, in _main
prepare(preparation_data)
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\spawn.py", line 236, in prepare
_fixup_main_from_path(data['init_main_from_path'])
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\spawn.py", line 287, in _fixup_main_from_path
main_content = runpy.run_path(main_path,
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\runpy.py", line 265, in run_path
return _run_module_code(code, init_globals, run_name,
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\runpy.py", line 97, in _run_module_code
_run_code(code, mod_globals, init_globals,
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\runpy.py", line 87, in _run_code
exec(code, run_globals)
File "C:\sources\nDBenchmark\mdio_test.py", line 9, in <module>
segy_to_mdio(segy_path=input_segy,
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\site-packages\mdio\converters\segy.py", line 177, in segy_to_mdio
dimensions, index_headers = get_grid_plan(
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\site-packages\mdio\segy\utilities.py", line 53, in get_grid_plan
index_headers = parse_trace_headers(
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\site-packages\mdio\segy\parsers.py", line 120, in parse_trace_headers
with Pool(num_workers) as pool:
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\context.py", line 119, in Pool
return Pool(processes, initializer, initargs, maxtasksperchild,
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\pool.py", line 212, in __init__
self._repopulate_pool()
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\pool.py", line 303, in _repopulate_pool
return self._repopulate_pool_static(self._ctx, self.Process,
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\pool.py", line 326, in _repopulate_pool_static
w.start()
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\process.py", line 121, in start
self._popen = self._Popen(self)
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\context.py", line 327, in _Popen
return Popen(process_obj)
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\popen_spawn_win32.py", line 45, in __init__
prep_data = spawn.get_preparation_data(process_obj._name)
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\spawn.py", line 154, in get_preparation_data
_check_not_importing_main()
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\spawn.py", line 134, in _check_not_importing_main
raise RuntimeError('''
RuntimeError:
An attempt has been made to start a new process before the
current process has finished its bootstrapping phase.
This probably means that you are not using fork to start your
child processes and you have forgotten to use the proper idiom
in the main module:
if __name__ == '__main__':
freeze_support()
...
The "freeze_support()" line can be omitted if the program
is not going to be frozen to produce an executable.
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\spawn.py", line 116, in spawn_main
exitcode = _main(fd, parent_sentinel)
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\spawn.py", line 125, in _main
prepare(preparation_data)
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\spawn.py", line 236, in prepare
_fixup_main_from_path(data['init_main_from_path'])
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\spawn.py", line 287, in _fixup_main_from_path
main_content = runpy.run_path(main_path,
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\runpy.py", line 265, in run_path
return _run_module_code(code, init_globals, run_name,
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\runpy.py", line 97, in _run_module_code
_run_code(code, mod_globals, init_globals,
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\runpy.py", line 87, in _run_code
exec(code, run_globals)
File "C:\sources\nDBenchmark\mdio_test.py", line 9, in <module>
segy_to_mdio(segy_path=input_segy,
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\site-packages\mdio\converters\segy.py", line 177, in segy_to_mdio
dimensions, index_headers = get_grid_plan(
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\site-packages\mdio\segy\utilities.py", line 53, in get_grid_plan
index_headers = parse_trace_headers(
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\site-packages\mdio\segy\parsers.py", line 120, in parse_trace_headers
with Pool(num_workers) as pool:
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\context.py", line 119, in Pool
return Pool(processes, initializer, initargs, maxtasksperchild,
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\pool.py", line 212, in __init__
self._repopulate_pool()
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\pool.py", line 303, in _repopulate_pool
return self._repopulate_pool_static(self._ctx, self.Process,
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\pool.py", line 326, in _repopulate_pool_static
w.start()
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\process.py", line 121, in start
self._popen = self._Popen(self)
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\context.py", line 327, in _Popen
return Popen(process_obj)
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\popen_spawn_win32.py", line 45, in __init__
prep_data = spawn.get_preparation_data(process_obj._name)
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\spawn.py", line 154, in get_preparation_data
_check_not_importing_main()
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\spawn.py", line 134, in _check_not_importing_main
raise RuntimeError('''
RuntimeError:
An attempt has been made to start a new process before the
current process has finished its bootstrapping phase.
This probably means that you are not using fork to start your
child processes and you have forgotten to use the proper idiom
in the main module:
if __name__ == '__main__':
freeze_support()
...
The "freeze_support()" line can be omitted if the program
is not going to be frozen to produce an executable.
This does work around the issue.
However, it's a highly unexpected requirement, given that my own code does not imply any multiprocessing, and the fact that an imported module will force this requirement may have significant implications in non-trivial systems, such as another module where you cannot enforce that the method of execution is isolated like this.
The Python process was forked over 30 times for this simple example.
Please note that Ctrl+C will not abort the process, since the other forked processes indeed continues in the background. So, the above suggested work-around only hides a larger issue.
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\site-packages\segyio\trace.py", line 50, in wrapindex
Traceback (most recent call last):
if not 0 <= i < len(self):
self.run()rs\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\process.py", line 315, in _bootstrap
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\pool.py", line 125, in worker
result = (True, func(*args, **kwds))
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\multiprocessing\pool.py", line 48, in mapstar
return list(map(*args))
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\site-packages\mdio\segy\_workers.py", line 271, in trace_worker_map
return trace_worker(*args)
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\site-packages\mdio\segy\_workers.py", line 182, in trace_worker
data_array.set_basic_selection(
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\site-packages\zarr\core.py", line 1448, in set_basic_selection
return self._set_basic_selection_nd(selection, value, fields=fields)
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\site-packages\zarr\core.py", line 1748, in _set_basic_selection_nd
self._set_selection(indexer, value, fields=fields)
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\site-packages\zarr\core.py", line 1820, in _set_selection
self._chunk_setitems(lchunk_coords, lchunk_selection, chunk_values,
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\site-packages\zarr\core.py", line 2018, in _chunk_setitems
to_store = {k: self._encode_chunk(v) for k, v in cdatas.items()}
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\site-packages\zarr\core.py", line 2018, in <dictcomp>
to_store = {k: self._encode_chunk(v) for k, v in cdatas.items()}
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\site-packages\zarr\core.py", line 2194, in _encode_chunk
cdata = self._compressor.encode(chunk)
File "C:\Users\mstormo\.pyenv\pyenv-win\versions\3.8.9\lib\site-packages\numcodecs\zfpy.py", line 70, in encode
return _zfpy.compress_numpy(
KeyboardInterrupt
Ingesting SEG-Y in 24 chunks: 38%|โโโโโโโโโโโโโ | 9/24 [00:23<00:11, 1.28block/s]
Correction, Ctrl+C kills the current batch of Python processes, forks a new set, which just hangs on 0% CPU usage.
Thank you for your comments, @mstormo.
I don't think the if __name__ == "__main__"
guard is unexpected. Documentation of multiprocessing
recommends it as part of their programming guidelines.
Importing segy_to_mdio
from mdio
by default uses workers from https://github.com/TGSAI/mdio-python/blob/main/src/mdio/converters/segy.py#L19 which in turn imports multiprocessing
.
The alternatives are as follows:
- We can run as single process on Windows which is less desirable.
- Allow
multiprocessing
as an option on Windows - Specify the usage of guard in the documentation.
What do you suggest as a fix? Happy to accept a PR.
The unexpected statement was for MDIO as a "back box" for the end-user, with no mention of the required guard statement in the documentation or examples, while explicitly mentioning Dask for the purpose of parallel distributed processing.
Note that my example here was a trivial reproducible example just to illustrate the problem. In my own case, the implementation was in a plugin in a larger system, where the main system started several executions as a result. Rather convoluted to understand what was going on, given that I was not using subprocessees or the multiprocessing library anywhere in my own code.
As such, it's unexpected for the end-user, while not a surprise to you as the implementor, of course.
Given that the process forking makes the end-user lose control of the terminal (hangs on six idle sub-processes of Python), I think the only option is to run it as a single process by default on Windows, with an option to enable it, if desired. (Option 1 & 2, combined)
I expect the main-guard to be required on Linux too, so examples would need to be updated to indicate such if you keep it enabled by default.
Hi @mstormo, thanks for letting us know!
We will make updates to the documentation based on your feedback.
As @srib mentioned, when we use multiprocessing in Python, it almost always needs a main guard; by default, the ingestion uses multiprocessing (not Dask). The reading, writing, and export can use Dask if needed, but it's off by default. We have plans to Daskify the ingestion as well. We should clarify this for sure.