fork from yolov8
# train
python main.py
# predict
python predict.py
# Parameters
nc: 15 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Clip, [["traffic"], True]] # 0
- [-1, 1, Clip, [["traffic"], False]] # 1
- [ 0, 1, Conv, [64, 3, 2]] # 2-P1
- [-1, 1, Conv, [128, 3, 2]] # 3-P2
- [-1, 3, C2f, [128, True]] # 4
- [-1, 1, Conv, [256, 3, 2]] # 5-P3
- [-1, 6, C2f, [256, True]] # 6
- [-1, 1, Conv, [512, 3, 2]] # 7-P4
- [-1, 6, C2f, [512, True]] # 8
- [-1, 1, Conv, [1024, 3, 2]] # 9-P5
- [-1, 3, C2f, [1024, True]] # 10
- [-1, 1, SPPF, [1024, 5]] # 11
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]] #12
- [[-1, 8], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 14
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 17 (P3/8-small)
- [[-1, 1], 1, CrossAttention, [7]]
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 14], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 21 (P4/16-medium)
- [[-1, 1], 1, CrossAttention, [7]]
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 11], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 25 (P5/32-large)
- [[-1, 1], 1, CrossAttention, [7]]
- [[18, 22, 26], 1, OBB, [nc, 1]] # OBB(P3, P4, P5)
class CrossAttention(nn.Module):
def __init__(self, channel: int, clip_channel: int, kernel_size: int = 7):
super(CrossAttention, self).__init__()
self.cross_attention = CBAM(c1=channel, kernel_size=kernel_size)
def forward(self, x):
x, clip_feature = x[0], x[1]
self.device = x.device
_, _, h, w = x.size()
batch, in_channel = clip_feature.size()
mlp = nn.Sequential(
nn.Linear(in_channel, h * w),
nn.ReLU(),
).to(self.device)
x = x.to(self.device)
residual = x
with autocast():
clip_feature = mlp(clip_feature)
clip_feature = (
torch.reshape(clip_feature, (batch, h, w)).unsqueeze(1).expand_as(x)
)
x = self.cross_attention(x + clip_feature)
return residual + x
class Clip(nn.Module):
def __init__(
self, channel, text: list[str] = ["traffic"], skip: bool = True
) -> None:
super(Clip, self).__init__()
self.model, _ = clip.load("ViT-B/32")
# self.model.float()
self.model.eval()
self.text = text
self.skip = skip
def forward(self, x: torch.Tensor):
if self.skip:
return x
self.device = x.device
if str(self.device) == "cpu":
self.model.float()
self.model = self.model.to(self.device)
with torch.no_grad():
with autocast():
if self.training:
import torchvision.transforms as transforms
clip_preprocess = transforms.Compose(
[
transforms.Resize(
(224, 224),
antialias=True,
),
transforms.Normalize(
(0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711),
),
]
)
x = clip_preprocess(x).to(self.device)
features = self.model.encode_image(x)
else:
text_input = clip.tokenize(self.text).to(self.device)
features = self.model.encode_text(text_input)
return features