[feature request] Query conditions have unexpected behavior with enum attributes
bkmartinjr opened this issue · 0 comments
I am in process of converting a bunch of string
attributes to use the new enum capability. I assumed the filter/query condition equality (==
and in [...]
) behavior would match that of the original string columns, but there is a significant change in behavior.
When a query condition on a string attribute fails to match, it returns an empty result. When a query condition is applied to a enum column, it generates an exception if the filter tries to test for equality with a string not present in the enum value list.
This effectively forces query condition users to know ahead of time what enum values are present, even if the end result of the operation is the same (an empty result).
At least in the Pandas ecosystem, equality operations on categoricals act as if they are operating on the value, e.g., an ==
operation is supported against a string, regardless if the dataframe column is a categorical-of-string or just plain string. String ordered comparison operations, such as <
, are not supported in this manner for unoredered categories - just equality and related ops (e.g., in
).
What I'd like to advocate for:
- for unordered enums: support equality-like ops vs any string (e.g, "enum_col == 'foobar'"), returning an empty result if the string value is not in the defined enum values.
- for ordered enums: also support lt, gt, etc. in the filters
Example of the unordered case:
In [16]: obs.schema
Out[16]:
ArraySchema(
domain=Domain(*[
Dim(name='soma_joinid', domain=(0, 2147483646), tile=2048, dtype='int64', filters=FilterList([DoubleDeltaFilter(reinterp_dtype=None), ZstdFilter(level=19), ])),
]),
attrs=[
Attr(name='assay', dtype='int8', var=False, nullable=False, enum_label='assay', filters=FilterList([ZstdFilter(level=19), ])),
Attr(name='observation_joinid', dtype='<U0', var=True, nullable=False, enum_label=None, filters=FilterList([ZstdFilter(level=19), ])),
],
cell_order='row-major',
tile_order='row-major',
capacity=65536,
sparse=True,
allows_duplicates=True,
)
In [17]: obs.enum('assay')
Out[17]: Enumeration(name='assay', cell_val_num=4294967295, ordered=False, values=["10x 3' v2", "10x 3' v3", "10x 5' v1", 'BD Rhapsody Targeted mRNA', 'Smart-seq2'])
In [18]: obs.query(cond="assay == 'foobar'").df[:]
---------------------------------------------------------------------------
TileDBError Traceback (most recent call last)
Cell In[18], line 1
----> 1 obs.query(cond="assay == 'foobar'").df[:]
File ~/cellxgene-census/venv-builder/lib/python3.10/site-packages/tiledb/multirange_indexing.py:256, in _BaseIndexer.__getitem__(self, idx)
254 self.subarray = Subarray(self.array)
255 self._set_ranges(idx)
--> 256 return self if self.return_incomplete else self._run_query()
File ~/cellxgene-census/venv-builder/lib/python3.10/site-packages/tiledb/multirange_indexing.py:399, in DataFrameIndexer._run_query(self)
396 import pyarrow
398 if self.pyquery is not None:
--> 399 self.pyquery.submit()
401 if self.pyquery is None:
402 df = pandas.DataFrame(self._empty_results)
TileDBError: TileDB internal: Enumeration value not found for field 'assay'
In [19]: obs.query(cond="observation_joinid == 'foobar'").df[:]
Out[19]:
Empty DataFrame
Columns: [soma_joinid, dataset_id, assay, assay_ontology_term_id, cell_type, cell_type_ontology_term_id, development_stage, development_stage_ontology_term_id, disease, disease_ontology_term_id, donor_id, is_primary_data, observation_joinid, self_reported_ethnicity, self_reported_ethnicity_ontology_term_id, sex, sex_ontology_term_id, suspension_type, tissue, tissue_ontology_term_id, tissue_type, tissue_general, tissue_general_ontology_term_id, raw_sum, nnz, raw_mean_nnz, raw_variance_nnz, n_measured_vars]
Index: []
This on: TileDB-Py version 0.24.0, Linux