Implementation and visualization of Gradient descent Algorithm
Implement the following formulas, as explained in the text.
Sigmoid activation function
π(π₯)=1/(1+πβπ₯)
Output (prediction) formula
π¦Μ =π(π€1π₯1+π€2π₯2+π)
Error function
πΈππππ(π¦,π¦Μ )=βπ¦log(π¦Μ )β(1βπ¦)log(1βπ¦Μ )
The function that updates the weights
π€πβΆπ€π+πΌ(π¦βπ¦Μ )π₯π
πβΆπ+πΌ(π¦βπ¦Μ )
Initial plot of data
After Gradient Descent
Error rate graph




