The total number of parameters is different with huggingface model card.
ErfanMoosaviMonazzah opened this issue · 0 comments
ErfanMoosaviMonazzah commented
Describe the bug
The total number of parameters show by summary function is different from what is shown on model card over huggingface website.
To Reproduce
from transformers import AutoModel, AutoModelForSeq2SeqLM
from torchinfo import summary
stos = AutoModelForSeq2SeqLM.from_pretrained('google/flan-t5-small')
summary(stos, row_settings=('var_names',))
""" Output:
====================================================================================================
Layer (type (var_name)) Param #
====================================================================================================
T5ForConditionalGeneration (T5ForConditionalGeneration) --
├─Embedding (shared) 16,449,536
├─T5Stack (encoder) 16,449,536
│ └─Embedding (embed_tokens) (recursive)
│ └─ModuleList (block) --
│ │ └─T5Block (0) 2,360,512
│ │ └─T5Block (1) 2,360,320
│ │ └─T5Block (2) 2,360,320
│ │ └─T5Block (3) 2,360,320
│ │ └─T5Block (4) 2,360,320
│ │ └─T5Block (5) 2,360,320
│ │ └─T5Block (6) 2,360,320
│ │ └─T5Block (7) 2,360,320
│ └─T5LayerNorm (final_layer_norm) 512
│ └─Dropout (dropout) --
├─T5Stack (decoder) 16,449,536
│ └─Embedding (embed_tokens) (recursive)
│ └─ModuleList (block) --
│ │ └─T5Block (0) 3,147,456
│ │ └─T5Block (1) 3,147,264
│ │ └─T5Block (2) 3,147,264
│ │ └─T5Block (3) 3,147,264
│ │ └─T5Block (4) 3,147,264
│ │ └─T5Block (5) 3,147,264
│ │ └─T5Block (6) 3,147,264
│ │ └─T5Block (7) 3,147,264
│ └─T5LayerNorm (final_layer_norm) 512
│ └─Dropout (dropout) --
├─Linear (lm_head) 16,449,536
====================================================================================================
Total params: 109,860,224
Trainable params: 109,860,224
Non-trainable params: 0
====================================================================================================
"""
Expected behavior
The total number of parameters be around 77 million (exactly 77,305,216 when using peft.print_trainable_parameters)