YOLO-FaceV2: A Scale and Occlusion Aware Face Detector
https://arxiv.org/abs/2208.02019
Create a Python Virtual Environment.
conda create -n {name} python=x.x
Enter Python Virtual Environment.
conda activate {name}
Install pytorch in this.
pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html
Install other python package.
pip install -r requirements.txt
Get the code.
git clone https://github.com/Krasjet-Yu/YOLO-FaceV2.git
Download the WIDER FACE dataset. Then convert it to YOLO format.
# You can modify convert.py and voc_label.py if needed.
python3 data/convert.py
python3 data/voc_label.py
link: https://pan.baidu.com/s/1FVIY20qtTSM9gDhz7DtJkA
code: tzfs
Train your model on WIDER FACE.
python train.py --weights preweight.pt
--data data/WIDER_FACE.yaml
--cfg models/yolov5s_v2_RFEM_MultiSEAM.yaml
--batch-size 64
--epochs 250
Evaluate the trained model via next code on WIDER FACE
python widerface_pred.py --weights runs/train/x/weights/best.pt
--save_folder ./widerface_evaluate/widerface_txt_x
cd widerface_evaluate/
python evaluation.py --pred ./widerface_txt_x
Download the eval_tool to show the performance.
The result is shown below:
see in ultralytics/yolov5#607
# Single-GPU
python train.py --epochs 10 --data coco128.yaml --weights yolov5s.pt --cache --evolve
# Multi-GPU
for i in 0 1 2 3 4 5 6 7; do
sleep $(expr 30 \* $i) && # 30-second delay (optional)
echo 'Starting GPU '$i'...' &&
nohup python train.py --epochs 10 --data coco128.yaml --weights yolov5s.pt --cache --device $i --evolve > evolve_gpu_$i.log &
done
# Multi-GPU bash-while (not recommended)
for i in 0 1 2 3 4 5 6 7; do
sleep $(expr 30 \* $i) && # 30-second delay (optional)
echo 'Starting GPU '$i'...' &&
"$(while true; do nohup python train.py... --device $i --evolve 1 > evolve_gpu_$i.log; done)" &
done
https://github.com/ultralytics/yolov5
https://github.com/deepcam-cn/yolov5-face
https://github.com/open-mmlab/mmdetection
https://github.com/dongdonghy/repulsion_loss_pytorch
If you think this work is helpful for you, please cite
@ARTICLE{2022arXiv220802019Y,
author = {{Yu}, Ziping and {Huang}, Hongbo and {Chen}, Weijun and {Su}, Yongxin and {Liu}, Yahui and {Wang}, Xiuying},
title = "{YOLO-FaceV2: A Scale and Occlusion Aware Face Detector}",
journal = {arXiv e-prints},
keywords = {Computer Science - Computer Vision and Pattern Recognition},
year = 2022,
month = aug,
eid = {arXiv:2208.02019},
pages = {arXiv:2208.02019},
archivePrefix = {arXiv},
eprint = {2208.02019},
primaryClass = {cs.CV},
adsurl = {https://ui.adsabs.harvard.edu/abs/2022arXiv220802019Y},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
We use code's license is MIT License. The code can be used for business inquiries or professional support requests.