Yamguocheng's Stars
inyeoplee77/SAGPool
Official PyTorch Implementation of SAGPool - ICML 2019
crowdbotp/socialways
Social Ways: Learning Multi-Modal Distributions of Pedestrian Trajectories with GANs (CVPR 2019)
aravindsankar28/DySAT
Representation learning on dynamic graphs using self-attention networks
AnkerLeng/Cpp-0-1-Resource
C++ 匠心之作 从0到1入门资料
StanfordASL/Trajectron
Code accompanying "The Trajectron: Probabilistic Multi-Agent Trajectory Modeling with Dynamic Spatiotemporal Graphs" by Boris Ivanovic and Marco Pavone.
zergtant/pytorch-handbook
pytorch handbook是一本开源的书籍,目标是帮助那些希望和使用PyTorch进行深度学习开发和研究的朋友快速入门,其中包含的Pytorch教程全部通过测试保证可以成功运行
Snailclimb/JavaGuide
「Java学习+面试指南」一份涵盖大部分 Java 程序员所需要掌握的核心知识。准备 Java 面试,首选 JavaGuide!
agrimgupta92/sgan
Code for "Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks", Gupta et al, CVPR 2018
Diego999/pyGAT
Pytorch implementation of the Graph Attention Network model by Veličković et. al (2017, https://arxiv.org/abs/1710.10903)
nndl/nndl.github.io
《神经网络与深度学习》 邱锡鹏著 Neural Network and Deep Learning
ShiYaya/graph
TrustAGI-Lab/Awesome-Graph-Neural-Networks
Paper Lists for Graph Neural Networks
jwyang/graph-rcnn.pytorch
[ECCV 2018] Official code for "Graph R-CNN for Scene Graph Generation"
ShusenTang/Dive-into-DL-PyTorch
本项目将《动手学深度学习》(Dive into Deep Learning)原书中的MXNet实现改为PyTorch实现。
huang-xx/TrafficPredict
Pytorch implementation for "TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents"
thunlp/GNNPapers
Must-read papers on graph neural networks (GNN)
Jiakui/awesome-gcn
resources for graph convolutional networks (图卷积神经网络相关资源)
dragen1860/Deep-Learning-with-PyTorch-Tutorials
深度学习与PyTorch入门实战视频教程 配套源代码和PPT
mashangxue/tensorflow2-zh
TensorFlow2.0 官方教程翻译,基本概念讲解、实战项目、TensorFlow2.0编程技巧。
nndl/exercise
exercise for nndl
yidao620c/python3-cookbook
《Python Cookbook》 3rd Edition Translation