Original PyTorch implementation of "Spatio-Temporal-Spectral Hierarchical Graph Convolutional Network With Semisupervised Active Learning for Patient-Specific Seizure Prediction" (IEEE Transactions on Cybernetics 2021).
Paper: https://ieeexplore.ieee.org/document/9440862
The code was implemented using Python 3.8.3 and the following packages:
- torch==1.4.0
- numpy==1.18.5
- scipy==1.5.0
STS-HGCN with an active preictal interval learning scheme is evaluated on one public dataset with 19 patients with intractable seizures:
If you find the paper or this repo useful, please cite:
@ARTICLE{9440862,
author={Li, Yang and Liu, Yu and Guo, Yu-Zhu and Liao, Xiao-Feng and Hu, Bin and Yu, Tao},
journal={IEEE Transactions on Cybernetics},
title={Spatio-Temporal-Spectral Hierarchical Graph Convolutional Network With Semisupervised Active Learning for Patient-Specific Seizure Prediction},
year={2021},
volume={},
number={},
pages={1-16},
doi={10.1109/TCYB.2021.3071860}}
For questions or help, feel welcome to write an email to sy1803113@buaa.edu.cn or liyang@buaa.edu.cn.