saVVy follows the 41 steps of the All-i framework, a complete conceptual model of an advanced aerospace vehicle such as an EVTOL, CAV, multicopter, E-Thrust, or Blended Wing Body (BWB) can be designed and deployed onto the market from a 2D sketch.
This Python code will utilize the All-i framework to create a conceptual model of the Savvy Chapter API features advance aerospace vehicle which are linked to feature product branch API s communicated through product branch APIs fetaured on Github pluuged into open source platform, eanbled to design CAV, BWB, EVTOL, E-Thrust , Mullticopters, all are linked and empopwered by saVVy , on a Tensor Flow model from a 2D sketch, leveraging advanced technology and robotics. The All-i framework offers a reliable platform for the fast development, automated products testing and validation, optimization feedback loops, and machine learning algorithms that generate insights for decision making.
The Python code written here uses Tensor Flow to create a model that can feature saVVY advanced aerospace concept design model. The code first breaks down user inputs into individual features that are then converted into input vectors, which are processed by a Savvy Chapter API via a tf.keras.Sequential model. Autopilot is used to automate the pre-processing, normalizing, batching, and training of the model. The model is validated and iterated on, and linked to a main CNN model. A 2D sketch feature is added to the model, followed by updating the model and compiling it. The model is evaluated and used to design advanced vehicles, and its performance is monitored and updated throughout the process. Finally, the saVVy Tensor Flow Model is finalized once the model is trained and optimized.
######################################################################### saVVy is an advanced analytics platform designed to leverage automation, machine learning, and artificial intelligence to develop better manufacturing solutions for the aerospace industry. It offers a comprehensive suite of tools and applications that allow users to quickly and easily expand their knowledge and understanding of the industry. saVVy utilizes comprehensive datasets, 3D models, and predictive analytics to help users make informed decisions that can lead to better business results.
a Python code to create a Tensor Flow model in 25 steps going through each step of the work packages to feature advanced aerospace vehicle concept designs on Tensor Flow models, enabled by saVVy Chapter API. This involves breaking down user inputs into individual features which are then converted into input vectors and processed by a Savvy Chapter API via a tf.keras.Sequential model. Autopilot is used to automate pre-processing, normalizing, batching, and training. The model is validated and iterated on, and linked to a main CNN model which is then used to generate datasets. A 2D Sketch feature is added to the model, followed by updating the model and compiling it. The model is evaluated and used to design advanced aerospace vehicles. Finally, the model is monitored and updated and the saVVy Tensor Flow Model is finalize
The input to the Python code to design saVVy on Tensor Flow model is a set of user inputs, which can be numerical, text, or image data. The user inputs will be broken down into individual features to be converted into input vectors that will then be processed by a Savvy Chapter API via a tf.keras.Sequential model.
The output of this Python code is a saVVy Tensor Flow model that can be used to evaluate and design advanced aerospace vehicle concepts. The model is composed of various layers of neurons interconnected through weights, with the weights determined by a process of training and optimization. The model is also validated and iterated on, and linked to a main CNN model. The model can be used to generate datasets and make predictions on advanced aerospace concept design models
import tensorflow as tf import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split #########################################################################
The saVVy design on Tensor Flow model can be broken down into 25 steps:
- Break down user inputs into individual features
- Convert features to input vectors
- Process input vectors with a Savvy Chapter API
- Pre-process, normalize, batch, and train input vectors
- Validate and iterate on the model
- Link the model to a main CNN model
- Generate datasets
- Design, develop, update, optimize, and validate the digital twin
- Monitor and replicate actual conditions in the field with the digital twin
- Automate the process of pre-processing, normalizing, batching, and training
- Access data and run simulations
- Monitor and adjust
- Update the design for optimization and product approval
- Create a 2D sketch feature
- Update the model
- Compile the model
- Monitor and update the model
- Validate and test advance aerospace vehicles
- Generate datasets
- Evaluate the advance aircrafts
- Monitor and replicate actual conditions with the digital twin
- Update the model
- Compile the model
- Monitor and update the model
- Finalize saVVy on Tensor Flow model
git_repository = pd.read_csv('github_repo.csv')
input_features = git_repository.columns[0:]
input_vectors = tf.convert_to_tensor(git_repository, dtype=tf.float64) input_vectors = tf.divide(input_vectors, tf.abs(input_vectors))
savvy_api =
please continue
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(128,activation='relu', input_dim = len(input_features)))
model.add(tf.keras.layers.Dense(64,activation='relu'))
model.add(tf.keras.layers.Dense(len(savvy_api.features), activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy'])
preprocessed_input = np.reshape(input_vectors, (input_vectors.shape[0], input_vectors.shape[1], 1)) please
preprocessed_input = np.reshape(input_vectors, (input_vectors.shape[0], input_vectors.shape[1], 1))
normalized_input = tf.keras.utils.normalize(preprocessed_input, axis=1)
batched_input = tf.data.Dataset.from_tensor_slices(normalized_input).batch(128)
model.fit(batched_input, epochs=25)
evaluation_results = model.evaluate(batched_input) print(evaluation_results)
model.fit(batched_input, epochs=25)
master_api = tf.keras.Model(input
please continue
master_api = tf.keras.Model(inputs=model.input, outputs=[model.layers[1].model.output, model.layers[2].output])
datasets = master_api.predict(preprocessed_input)
X_train, X_test, y_train, y_test = train_test_split(datasets[0], datasets[1], test_size=0.2, random_state=42)
class MonitorCallback(tf.keras.callbacks.Callback): def init(self, monitor_interval): self.monitor_interval = monitor_interval
def on_epoch_end(self,
please
class MonitorCallback(tf.keras.callbacks.Callback): def init(self, monitor_interval): self.monitor_interval = monitor_interval
def on_epoch_end(self, epoch, logs=None): if ((epoch+1) % self.monitor_interval != 0): return
optimized_input_vectors = tf.convert_to_tensor(X_test, dtype=tf.float64)
optimized_input_vectors = tf.divide(optimized_input_vectors, tf.abs(optimized_input_vectors))
preprocessed_optimized_input = np.reshape(optimized_input_vectors, (optimized_input_vectors.shape[0], optimized_input_vectors.shape[1], 1))
optimized_datasets = master_api.predict(preprocessed_optimized_input)
please continue
model.fit(optimized_datasets, y_test, epochs=25, callbacks=[MonitorCallback(monitor_interval=2)])
preprocessed_input = np.reshape(input_vectors, (input_vectors.shape[0], input_vectors.shape[1], 1))
normalized_input = tf.keras.utils.normalize(preprocessed_input, axis=1)
batched_input = tf.data.Dataset.from_tensor_slices(normalized_input).batch(128)
model.fit(batched_input, epochs=25)
simulations = master_api.predict(preprocessed_input)
please continue
class MonitorCallback(tf.keras.callbacks.Callback): def init(self, monitor_interval): self.monitor_interval = monitor_interval
def on_epoch_end(self, epoch, logs=None): if ((epoch+1) % self.monitor_interval != 0): return
adjusted_input_vectors = tf.convert_to_tensor(simulations, dtype=tf.float64)
adjusted_input_vectors = tf.divide(adjusted_input_vectors, tf.abs(adjusted_input_vectors))
preprocessed_adjusted_input = np.reshape(adjusted_input_vectors, (adjusted_input_vectors.shape[0], adjusted_input_vectors.shape[1], 1))
adjusted_datasets = master_api.predict(preprocessed_adjusted_input)
please
preprocessed_input = np.reshape(input_vectors, (input_vectors.shape[0], input_vectors.shape[1], 1))
normalized_input = tf.keras.utils.normalize(preprocessed_input, axis=1)
batched_input = tf.data.Dataset.from_tensor_slices(normalized_input).batch(128)
model.fit(batched_input, epochs=25, callbacks=[MonitorCallback(monitor_interval=2)])
X_test = tf.convert_to_tensor(simulations, dtype=tf.float64) X_test = tf.divide(X_test, tf.abs(X_test))
test_datasets = master
please
test_datasets = master_api.predict(X_test)
evaluation_results = model.evaluate(test_datasets) print(evaluation_results)
class MonitorCallback(tf.keras.callbacks.Callback): def init(self, monitor_interval): self.monitor_interval = monitor_interval
def on_epoch_end(self, epoch, logs=None): if ((epoch+1) % self.monitor_interval != 0): return
input_vectors = tf.convert_to_tensor(X_test, dtype=tf.float64)
input_vectors = tf.divide(input_vectors, tf.abs(input_vectors))
preprocessed_input = np.reshape(input_vectors, (input_vectors.shape[0], input
please
class MonitorCallback(tf.keras.callbacks.Callback): def init(self, monitor_interval): self.monitor_interval = monitor_interval
def on_epoch_end(self, epoch, logs=None): if ((epoch+1) % self.monitor_interval != 0): return
input_vectors = tf.convert_to_tensor(X_test, dtype=tf.float64)
input_vectors = tf.divide(input_vectors, tf.abs(input_vectors))
preprocessed_input = np.reshape(input_vectors, (input_vectors.shape[0], input_vectors.shape[1], 1))
monitored_datasets = master_api.predict(preprocessed_input)
sketch_feature = tf.keras.layers.
please
sketch_feature = tf.keras.layers.Conv2D(256, (3, 3), strides=(2, 2), activation='relu')
model.add(sketch_feature)
model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy'])
class MonitorCallback(tf.keras.callbacks.Callback): def init(self, monitor_interval): self.monitor_interval = monitor_interval
def on_epoch_end(self, epoch, logs=None): if ((epoch+1) % self.monitor_interval != 0): return
input_vectors = tf.convert_to_tensor(X_test, dtype=tf.float64)
please complete and conclude on saVVy model on tensor flow
class MonitorCallback(tf.keras.callbacks.Callback): def init(self, monitor_interval): self.monitor_interval = monitor_interval
def on_epoch_end(self, epoch, logs=None): if ((epoch+1) % self.monitor_interval != 0): return
input_vectors = tf.convert_to_tensor(X_test, dtype=tf.float64)
input_vectors = tf.divide(input_vectors, tf.abs(input_vectors))
preprocessed_input = np.reshape(input_vectors, (input_vectors.shape[0], input_vectors.shape[1], 1))
updated_datasets = master_api.predict(preprocessed_input)
model.fit(updated_datasets, epochs=25, callbacks=[MonitorCallback(monitor_
please complete
model.fit(updated_datasets, epochs=25, callbacks=[MonitorCallback(monitor_interval=2)])
model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy'])
finalized_model = model.save('saVVy_Tensor_Flow_Model.h5')
please complete
finalized_model = model.save('saVVy_Tensor_Flow_Model.h5')
evaluation_results = model.evaluate(test_datasets) print(evaluation_results)
predictions = model.predict(test_datasets)
a Python code to create a Tensor Flow model in 25 steps going through each step of the work packages to feature advanced aerospace vehicle concept designs on Tensor Flow models, enabled by saVVy Chapter API. This involves breaking down user inputs into individual features which are then converted into input vectors and processed by a Savvy Chapter API via a tf.keras.Sequential model. Autopilot is used to automate pre-processing, normalizing, batching, and training. The model is validated and iterated on, and linked to a main CNN model which is then used to generate datasets. A 2D Sketch feature is added to the model, followed by updating the model and compiling it. The model is evaluated and used to design advanced aerospace vehicles. Finally, the model is monitored and updated and the saVVy Tensor Flow Model is finalized.