Forked from TI Repo https://git.ti.com/git/apps/tensorflow-lite-examples.git Tensorflow Lite demos with input via OpenCV and used for gem5 full system simulation Procedure to build ---------------------------- Step 1: Set environment variables * Arm only: - export TARGET_TOOLCHAIN_PREFIX - export TF_SRC_DIR - export OPENCV_SRC_DIR Step 2: Run "make" from the top-level directory to build the demos Example: $ export TARGET_TOOLCHAIN_PREFIX=aarch64-linux-gnu- $ export TF_SRC_DIR="/home/craft/workspace/gem5/tensorflow_src" $ export OPENCV_SRC_DIR="/home/craft/workspace/gem5/opencv" $ make Binaries to run on target --------------------------- * Classification: run "tflite_classification" with command usage as below: --tflite_model, -m: model_name.tflite --input_src, -r: [0|1|2] input source: image 0, video 1, camera 2 --input_path, -i: path of the input image/video or video port for camera, e.g., 1 for /dev/video1 --labels, -l: labels for the model --frame_cnt, -c: the number of frames to be used --input_mean, -b: input mean --input_std, -s: input standard deviation --profiling, -p: [0|1], profiling or not --threads, -t: number of threads * Segmentation: run "tflite_segmentation" with command usage as below --tflite_model, -m: model_name.tflite --input_src, -r: [0|1|2] input source: image 0, video 1, camera 2 --input_path, -i: path of the input image/video or video port for camera, e.g., 1 for /dev/video1 --frame_cnt, -c: the number of frames to be used --input_mean, -b: input mean --input_std, -s: input standard deviation --profiling, -p: [0|1], profiling or not --threads, -t: number of threads
ajithkumarmcw/tensorflow-lite-cpp-examples
Forked from TI Repo https://git.ti.com/git/apps/tensorflow-lite-examples.git
C++Apache-2.0