Evaluation is based on several pretrained models for faces and human poses. We evaluate, if the movement is the same as in target video and if the identity is preserved.
git clone --recursive https://github.com/AliaksandrSiarohin/pose-evaluation
The general pipeline first compute the statistics for real data and generated using the script extract.py
. Then use script cmp.py
to measure the final score.
For extracting face keypoints (AKD) we use: https://github.com/1adrianb/face-alignment
cd face-aligment
pip install -r requirements.txt
python setup.py install
python extract.py --in_folder /path/to/test --out_file pose_gt.pkl --is_video --type face_pose --image_shape 256,256
python extract.py --in_folder /path/to/generated/png --out_file pose_gen.pkl --is_video --type face_pose --image_shape 256,256
python cmp_kp.py pose_gt.pkl pose_gen.pkl
For extracting identity embedding (AED) we use: https://github.com/thnkim/OpenFacePytorch
python extract.py --in_folder /path/to/test --out_file id_gt.pkl --is_video --type face_id --image_shape 256,256
python extract.py --in_folder /path/to/generated/png --out_file id_gen.pkl --is_video --type face_id --image_shape 256,256
python cmp.py id_gt.pkl id_gen.pkl
For extracting pose keypoints (AKD) we use: https://github.com/tensorboy/pytorch_Realtime_Multi-Person_Pose_Estimation
Download model https://yadi.sk/d/0L-PgAaGRKgkJA
mkdir pytorch_Realtime_Multi-Person_Pose_Estimation/network/weight
mv pose_model.pth pytorch_Realtime_Multi-Person_Pose_Estimation/network/weight/pose_model.pth
python extract.py --in_folder /path/to/test --out_file pose_gt.pkl --is_video --type body_pose --image_shape 256,256
python extract.py --in_folder /path/to/generated/png --out_file pose_gen.pkl --is_video --type body_pose --image_shape 256,256
python cmp_with_missing.py pose_gt.pkl pose_gen.pkl
For extracting identity embedding (AED) we use: https://github.com/layumi/Person_reID_baseline_pytorch
Download model https://yadi.sk/d/jAPhvFEFp6qzIw
python extract.py --in_folder /path/to/test --out_file id_gt.pkl --is_video --type body_id --image_shape 256,256
python extract.py --in_folder /path/to/generated/png --out_file id_gen.pkl --is_video --type body_id --image_shape 256,256
python cmp.py id_gt.pkl id_gen.pkl