Convolutional Neural Network from scratch using Python. Implemented forward propagation, backward propagation, and 10-Fold Cross Validation.
Models used can be changed in helper.py
or can be loaded with the format as in /output
.
- Numpy
- Matplotlib
pip install numpy matplotlib
python main.py run [-h] [-e EPOCHS] [-b BATCH_SIZE] [-n NUM_SAMPLES] [-lr LEARNING_RATE] [-s SAVE] [-l LOAD]
Details on the args:
usage: main.py run [-h] [-e EPOCHS] [-b BATCH_SIZE] [-n NUM_SAMPLES] [-lr LEARNING_RATE] [-s SAVE] [-l LOAD]
options:
-h, --help show this help message and exit
Training Arguments:
-e EPOCHS, --epochs EPOCHS
Number of epochs (default: 3)
-b BATCH_SIZE, --batch_size BATCH_SIZE
Batch size (default: 5)
-n NUM_SAMPLES, --num_samples NUM_SAMPLES
Length of split dataset (default: 10)
-lr LEARNING_RATE, --learning_rate LEARNING_RATE
Length of split dataset (default: 0.01)
Model Management:
-s SAVE, --save SAVE Save the model after training (default: None)
-l LOAD, --load LOAD Name of the file to load (including .json) (default: None)