banzaicloud/koperator

install kafka cluster in istio ,the pod can not be created

13567436138 opened this issue · 4 comments

We use GitHub issues to discuss Kafka operator bugs and new features.
For support requests please use the channels listed in SUPPORT.md
[root@node01 kafka_mesh]# kubectl get KafkaCluster --all-namespaces
NAMESPACE NAME CLUSTER STATE CLUSTER ALERT COUNT LAST SUCCESSFUL UPGRADE UPGRADE ERROR COUNT AGE
istio kafka ClusterReconciling 0 0 2m39s

apiVersion: kafka.banzaicloud.io/v1beta1
kind: KafkaCluster
metadata:
  labels:
    controller-tools.k8s.io: "1.0"
  name: kafka
spec:
  headlessServiceEnabled: false
  ingressController: "istioingress"
  istioControlPlane:
    name: istiod
    namespace: istio-system
  istioIngressConfig:
    gatewayConfig:
      mode: ISTIO_MUTUAL
  zkAddresses:
    - "zookeeper-client.zookeeper:2181"
  oneBrokerPerNode: false
  clusterImage: "ghcr.io/banzaicloud/kafka:2.13-3.1.0"
  readOnlyConfig: |
    auto.create.topics.enable=false
    cruise.control.metrics.topic.auto.create=true
    cruise.control.metrics.topic.num.partitions=1
    cruise.control.metrics.topic.replication.factor=2
  brokerConfigGroups:
    default:
      brokerAnnotations:
        sidecar.istio.io/userVolumeMount: '[{"name":"exitfile", "mountPath":"/var/run/wait", "readonly":true}]'
      storageConfigs:
        - mountPath: "/kafka-logs"
          pvcSpec:
            accessModes:
              - ReadWriteOnce
            resources:
              requests:
                storage: 10Gi
  brokers:
    - id: 0
      brokerConfigGroup: "default"
    - id: 1
      brokerConfigGroup: "default"
    - id: 2
      brokerConfigGroup: "default"
  rollingUpgradeConfig:
    failureThreshold: 1
  listenersConfig:
    internalListeners:
      - type: "plaintext"
        name: "internal"
        containerPort: 29092
        usedForInnerBrokerCommunication: true
      - type: "plaintext"
        name: "controller"
        containerPort: 29093
        usedForInnerBrokerCommunication: false
        usedForControllerCommunication: true
    externalListeners:
      - type: "plaintext"
        name: "external"
        externalStartingPort: 19090
        containerPort: 9094
  cruiseControlConfig:
    topicConfig:
      partitions: 12
      replicationFactor: 3
    config: |
      # Copyright 2017 LinkedIn Corp. Licensed under the BSD 2-Clause License (the "License"). See License in the project root for license information.
      #
      # This is an example property file for Kafka Cruise Control. See KafkaCruiseControlConfig for more details.
      # Configuration for the metadata client.
      # =======================================
      # The maximum interval in milliseconds between two metadata refreshes.
      #metadata.max.age.ms=300000
      # Client id for the Cruise Control. It is used for the metadata client.
      #client.id=kafka-cruise-control
      # The size of TCP send buffer bytes for the metadata client.
      #send.buffer.bytes=131072
      # The size of TCP receive buffer size for the metadata client.
      #receive.buffer.bytes=131072
      # The time to wait before disconnect an idle TCP connection.
      #connections.max.idle.ms=540000
      # The time to wait before reconnect to a given host.
      #reconnect.backoff.ms=50
      # The time to wait for a response from a host after sending a request.
      #request.timeout.ms=30000
      # Configurations for the load monitor
      # =======================================
      # The number of metric fetcher thread to fetch metrics for the Kafka cluster
      num.metric.fetchers=1
      # The metric sampler class
      metric.sampler.class=com.linkedin.kafka.cruisecontrol.monitor.sampling.CruiseControlMetricsReporterSampler
      # Configurations for CruiseControlMetricsReporterSampler
      metric.reporter.topic.pattern=__CruiseControlMetrics
      # The sample store class name
      sample.store.class=com.linkedin.kafka.cruisecontrol.monitor.sampling.KafkaSampleStore
      # The config for the Kafka sample store to save the partition metric samples
      partition.metric.sample.store.topic=__KafkaCruiseControlPartitionMetricSamples
      # The config for the Kafka sample store to save the model training samples
      broker.metric.sample.store.topic=__KafkaCruiseControlModelTrainingSamples
      # The replication factor of Kafka metric sample store topic
      sample.store.topic.replication.factor=2
      # The config for the number of Kafka sample store consumer threads
      num.sample.loading.threads=8
      # The partition assignor class for the metric samplers
      metric.sampler.partition.assignor.class=com.linkedin.kafka.cruisecontrol.monitor.sampling.DefaultMetricSamplerPartitionAssignor
      # The metric sampling interval in milliseconds
      metric.sampling.interval.ms=120000
      metric.anomaly.detection.interval.ms=180000
      # The partition metrics window size in milliseconds
      partition.metrics.window.ms=300000
      # The number of partition metric windows to keep in memory
      num.partition.metrics.windows=1
      # The minimum partition metric samples required for a partition in each window
      min.samples.per.partition.metrics.window=1
      # The broker metrics window size in milliseconds
      broker.metrics.window.ms=300000
      # The number of broker metric windows to keep in memory
      num.broker.metrics.windows=20
      # The minimum broker metric samples required for a partition in each window
      min.samples.per.broker.metrics.window=1
      # The configuration for the BrokerCapacityConfigFileResolver (supports JBOD and non-JBOD broker capacities)
      capacity.config.file=config/capacity.json
      #capacity.config.file=config/capacityJBOD.json
      # Configurations for the analyzer
      # =======================================
      # The list of goals to optimize the Kafka cluster for with pre-computed proposals
      default.goals=com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskCapacityGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundCapacityGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundCapacityGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.CpuCapacityGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaDistributionGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.PotentialNwOutGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskUsageDistributionGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundUsageDistributionGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundUsageDistributionGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.CpuUsageDistributionGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.TopicReplicaDistributionGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.LeaderBytesInDistributionGoal
      # The list of supported goals
      goals=com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskCapacityGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundCapacityGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundCapacityGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.CpuCapacityGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaDistributionGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.PotentialNwOutGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskUsageDistributionGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundUsageDistributionGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundUsageDistributionGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.CpuUsageDistributionGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.TopicReplicaDistributionGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.LeaderBytesInDistributionGoal,com.linkedin.kafka.cruisecontrol.analyzer.kafkaassigner.KafkaAssignerDiskUsageDistributionGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.PreferredLeaderElectionGoal
      # The list of supported hard goals
      hard.goals=com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskCapacityGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundCapacityGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundCapacityGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.CpuCapacityGoal
      # The minimum percentage of well monitored partitions out of all the partitions
      min.monitored.partition.percentage=0.95
      # The balance threshold for CPU
      cpu.balance.threshold=1.1
      # The balance threshold for disk
      disk.balance.threshold=1.1
      # The balance threshold for network inbound utilization
      network.inbound.balance.threshold=1.1
      # The balance threshold for network outbound utilization
      network.outbound.balance.threshold=1.1
      # The balance threshold for the replica count
      replica.count.balance.threshold=1.1
      # The capacity threshold for CPU in percentage
      cpu.capacity.threshold=0.8
      # The capacity threshold for disk in percentage
      disk.capacity.threshold=0.8
      # The capacity threshold for network inbound utilization in percentage
      network.inbound.capacity.threshold=0.8
      # The capacity threshold for network outbound utilization in percentage
      network.outbound.capacity.threshold=0.8
      # The threshold to define the cluster to be in a low CPU utilization state
      cpu.low.utilization.threshold=0.0
      # The threshold to define the cluster to be in a low disk utilization state
      disk.low.utilization.threshold=0.0
      # The threshold to define the cluster to be in a low network inbound utilization state
      network.inbound.low.utilization.threshold=0.0
      # The threshold to define the cluster to be in a low disk utilization state
      network.outbound.low.utilization.threshold=0.0
      # The metric anomaly percentile upper threshold
      metric.anomaly.percentile.upper.threshold=90.0
      # The metric anomaly percentile lower threshold
      metric.anomaly.percentile.lower.threshold=10.0
      # How often should the cached proposal be expired and recalculated if necessary
      proposal.expiration.ms=60000
      # The maximum number of replicas that can reside on a broker at any given time.
      max.replicas.per.broker=10000
      # The number of threads to use for proposal candidate precomputing.
      num.proposal.precompute.threads=1
      # the topics that should be excluded from the partition movement.
      #topics.excluded.from.partition.movement
      # Configurations for the executor
      # =======================================
      # The max number of partitions to move in/out on a given broker at a given time.
      num.concurrent.partition.movements.per.broker=10
      # The interval between two execution progress checks.
      execution.progress.check.interval.ms=10000
      # Configurations for anomaly detector
      # =======================================
      # The goal violation notifier class
      anomaly.notifier.class=com.linkedin.kafka.cruisecontrol.detector.notifier.SelfHealingNotifier
      # The metric anomaly finder class
      metric.anomaly.finder.class=com.linkedin.kafka.cruisecontrol.detector.KafkaMetricAnomalyFinder
      # The anomaly detection interval
      anomaly.detection.interval.ms=10000
      # The goal violation to detect.
      anomaly.detection.goals=com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskCapacityGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundCapacityGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundCapacityGoal,com.linkedin.kafka.cruisecontrol.analyzer.goals.CpuCapacityGoal
      # The interested metrics for metric anomaly analyzer.
      metric.anomaly.analyzer.metrics=BROKER_PRODUCE_LOCAL_TIME_MS_MAX,BROKER_PRODUCE_LOCAL_TIME_MS_MEAN,BROKER_CONSUMER_FETCH_LOCAL_TIME_MS_MAX,BROKER_CONSUMER_FETCH_LOCAL_TIME_MS_MEAN,BROKER_FOLLOWER_FETCH_LOCAL_TIME_MS_MAX,BROKER_FOLLOWER_FETCH_LOCAL_TIME_MS_MEAN,BROKER_LOG_FLUSH_TIME_MS_MAX,BROKER_LOG_FLUSH_TIME_MS_MEAN
      ## Adjust accordingly if your metrics reporter is an older version and does not produce these metrics.
      #metric.anomaly.analyzer.metrics=BROKER_PRODUCE_LOCAL_TIME_MS_50TH,BROKER_PRODUCE_LOCAL_TIME_MS_999TH,BROKER_CONSUMER_FETCH_LOCAL_TIME_MS_50TH,BROKER_CONSUMER_FETCH_LOCAL_TIME_MS_999TH,BROKER_FOLLOWER_FETCH_LOCAL_TIME_MS_50TH,BROKER_FOLLOWER_FETCH_LOCAL_TIME_MS_999TH,BROKER_LOG_FLUSH_TIME_MS_50TH,BROKER_LOG_FLUSH_TIME_MS_999TH
      # The zk path to store failed broker information.
      failed.brokers.zk.path=/CruiseControlBrokerList
      # Topic config provider class
      topic.config.provider.class=com.linkedin.kafka.cruisecontrol.config.KafkaTopicConfigProvider
      # The cluster configurations for the KafkaTopicConfigProvider
      cluster.configs.file=config/clusterConfigs.json
      # The maximum time in milliseconds to store the response and access details of a completed user task.
      completed.user.task.retention.time.ms=21600000
      # The maximum time in milliseconds to retain the demotion history of brokers.
      demotion.history.retention.time.ms=86400000
      # The maximum number of completed user tasks for which the response and access details will be cached.
      max.cached.completed.user.tasks=100
      # The maximum number of user tasks for concurrently running in async endpoints across all users.
      max.active.user.tasks=25
      # Enable self healing for all anomaly detectors, unless the particular anomaly detector is explicitly disabled
      self.healing.enabled=true
      # Enable self healing for broker failure detector
      #self.healing.broker.failure.enabled=true
      # Enable self healing for goal violation detector
      #self.healing.goal.violation.enabled=true
      # Enable self healing for metric anomaly detector
      #self.healing.metric.anomaly.enabled=true
      # configurations for the webserver
      # ================================
      # HTTP listen port
      webserver.http.port=9090
      # HTTP listen address
      webserver.http.address=0.0.0.0
      # Whether CORS support is enabled for API or not
      webserver.http.cors.enabled=false
      # Value for Access-Control-Allow-Origin
      webserver.http.cors.origin=http://localhost:8080/
      # Value for Access-Control-Request-Method
      webserver.http.cors.allowmethods=OPTIONS,GET,POST
      # Headers that should be exposed to the Browser (Webapp)
      # This is a special header that is used by the
      # User Tasks subsystem and should be explicitly
      # Enabled when CORS mode is used as part of the
      # Admin Interface
      webserver.http.cors.exposeheaders=User-Task-ID
      # REST API default prefix
      # (dont forget the ending *)
      webserver.api.urlprefix=/kafkacruisecontrol/*
      # Location where the Cruise Control frontend is deployed
      webserver.ui.diskpath=./cruise-control-ui/dist/
      # URL path prefix for UI
      # (dont forget the ending *)
      webserver.ui.urlprefix=/*
      # Time After which request is converted to Async
      webserver.request.maxBlockTimeMs=10000
      # Default Session Expiry Period
      webserver.session.maxExpiryTimeMs=60000
      # Session cookie path
      webserver.session.path=/
      # Server Access Logs
      webserver.accesslog.enabled=true
      # Location of HTTP Request Logs
      webserver.accesslog.path=access.log
      # HTTP Request Log retention days
      webserver.accesslog.retention.days=14
    clusterConfig: |
      {
        "min.insync.replicas": 3
      }

Thanks!

Please attach your koperator, istio-oprator and istiod logs. Also, your IstioControlPlane custom resource.

Hi, I've been having the same trouble, I followed the document to setup https://banzaicloud.com/docs/supertubes/kafka-operator/install-kafka-operator/ , everything runs well if i use this yaml file to run the kafka brokers https://github.com/banzaicloud/koperator/blob/master/config/samples/simplekafkacluster.yaml; However if i use this one https://github.com/banzaicloud/koperator/blob/master/config/samples/kafkacluster-with-istio.yaml there aren't any kafka brokers created and only this two pods are shown running without any errors.

image

The https://github.com/banzaicloud/koperator/blob/master/config/samples/kafkacluster-with-istio.yaml requires to have an Istio mesh deployed into your Kubernetes cluster using https://github.com/banzaicloud/istio-operator/tree/v2.11.7

Can you confirm that you deployed Istio first and is up and running? If so please attach you koperator, istio-operator logs and also your IstioControlPlane custom resource.

Closing this ticket as did not receive the requested info which is needed to further investigate this issue and rule out that is not a user error.