05_ARMv8_指令集_跳转_比较与返回指令
carloscn opened this issue · 1 comments
05-ARMv8-指令集-跳转和比较指令
- 零计数指令CLZ
- 比较指令:CMP, CMN
- 跳转指令:B, BR, BL, BLR
- 条件选择指令:CSEL, CSET, CSINC
1. CLZ
计算最高为1的比特位前面有多少个0。例如, 0x0800 0000 0000 000F,前面是有4个0的(使用64位的寄存器),如果使用Wn寄存器,按照32位算。
- CLZ
- Define:
CLZ <Xd>, <Xn>
- Example1:
clz x0, x1
[计算x1寄存器内的值最高位1的比特位前面有多少个0,并放入x0]
- Define:
2. 比较指令
比较指令有CMP和CMN,CMP本质为:CMP x1, x2
-> x1 = x1 - x2
;CMN为负向比较:CMN x1, x2
->x1 = x1 + x2
。
2.1 CMP
NZC = a - b,根据不同的比较结果,来确定NZC的标志位,若x1 > x2, NCZV = 0100,若x1 = x2, NCZV = 0110,若x1 < x2, NCZV = 1000。
- CMP (immediate):
- Define:
CMP <Xd|SP>, #<imm>{, lsl <#shift>}
, note shift supports #0 and #12 only. - Example1:
cmp x1, #8
(x1 = x2 - 8) - Example2:
cmp x1, #8, lsl #12
( x1 = x2 - (8 << 12) )
- Define:
- CMP (shifted register):
- Define:
CMP <Xd>, <Xm>{, <shift> #<amount>}
, note #amount range 0 to 63 - Note: LSL when shift = 0, LSR when shift = 1, ASR when shift = 2
- Example1:
cmp x1, x2, asr #2
- Define:
2.1 CMN
NZC = a + b,a和b如果加和为负数,N置位; a + b的和为0,Z置位;a + b溢出(两个负数相加),C置位。
- CMN (extended register) :
- Define:
CMN <Xd|SP>, <R><m>, {<extend> {#<amount>}}
- Example1:
cmn x0, x1
( x0 = x0 - x1 ) - Example2:
cmn x0, x1, lsl #5
( x0 = x0 - (x1 << 5) )
- Define:
- CMN (immediate):
- Define:
CMN <Xd|SP>, #<imm>{, lsl <#shift>}
, note shift supports #0 and #12 only. - Example1:
cmn x1, #8
(x1 = x2 - 8) - Example2:
cmn x1, #8, lsl #12
( x1 = x2 - (8 << 12) )
- Define:
- CMN (shifted register):
- Define:
CMN <Xd>, <Xm>{, <shift> #<amount>}
, note #amount range 0 to 63 - Note: LSL when shift = 0, LSR when shift = 1, ASR when shift = 2
- Example1:
cmn x1, x2, asr #2
- Define:
对于CMN,根据实验有以下几种情况:
Condition | Algo | N | Z | C |
---|---|---|---|---|
-0x01 > -0x0E | (-0x01) + (- 0x0E) = -0x0F | 1 | 0 | 1 |
0 = 0 | 0 + 0 = 0 | 0 | 1 | 0 |
-0x0F < -0x01 | (-0x0F) + (-0x01) = -0x10 | 1 | 0 | 1 |
0x0F > -0x01 | (0x0F) + (-0x01) = 0x0E | 0 | 0 | 1 |
-0x0F < 0x01 | (-0x0F) + (0x01) = -0x0E | 1 | 0 | 0 |
-0x01 < 0x01 | (-0x01) + 0x01 = 0 | 0 | 1 | 1 |
2.3 Condition Codes
(CMP
and CMN
) Sets the condition flags to the result of a comparison if the original condition is true. If not true, the conditional flags are set to a specified condition flag state. The conditional compare instruction is very useful for expressing nested or compound comparisons.
Condition codes: 1
Code | Encoding | Meaning (when set by CMP) | Meaning (when set by FCMP) | Condition flags |
---|---|---|---|---|
EQ | 0b0000 |
Equal to. | Equal to. | Z =1 |
NE | 0b0001 |
Not equal to. | Unordered, or not equal to. | Z = 0 |
CS | 0b0010 |
Carry set (identical to HS). | Greater than, equal to, or unordered (identical to HS). | C = 1 |
HS | 0b0010 |
Greater than, equal to (unsigned) (identical to CS). | Greater than, equal to, or unordered (identical to CS). | C = 1 |
CC | 0b0011 |
Carry clear (identical to LO). | Less than (identical to LO). | C = 0 |
LO | 0b0011 |
Unsigned less than (identical to CC). | Less than (identical to CC). | C = 0 |
MI | 0b0100 |
Minus, Negative. | Less than. | N = 1 |
PL | 0b0101 |
Positive or zero. | Greater than, equal to, or unordered. | N = 0 |
VS | 0b0110 |
Signed overflow. | Unordered. (At least one argument was NaN). | V = 1 |
VC | 0b0111 |
No signed overflow. | Not unordered. (No argument was NaN). | V = 0 |
HI | 0b1000 |
Greater than (unsigned). | Greater than or unordered. | (C = 1) && (Z = 0) |
LS | 0b1001 |
Less than or equal to (unsigned). | Less than or equal to. | (C = 0) || (Z = 1) |
GE | 0b1010 |
Greater than or equal to (signed). | Greater than or equal to. | N==V |
LT | 0b1011 |
Less than (signed). | Less than or unordered. | N!=V |
GT | 0b1100 |
Greater than (signed). | Greater than. | (Z==0) && (N==V) |
LE | 0b1101 |
Less than or equal to (signed). | Less than, equal to or unordered. | (Z==1) || (N!=V) |
AL | 0b1110 |
Always executed. | Default. Always executed. | Any |
NV | 0b1111 |
Always executed. | Always executed. | Any |
// The test is:
// suppose the x1 = 1, x2 = -3
// Use the `cmn` instruction to compare the x1 and x2
// When the result is neg number, make x2 += 1;
// until the result is zero, then return the function.
test_cmn_jump:
msr NZCV, xzr
mov x0, xzr
mov x1, #0x0
loop:
add x1, x1, #0x1
mov x2, #-0x3
cmn x1, x2 // NZCV = 1000
mrs x0, NZCV
b.mi loop
ret
3. 条件选择指令
条件选择指令包括CSEL\CSET\CSINC三条指令,也是非常重要的指令。
3.1 CSEL
CSEL, 条件选择指令,如果cond为真,那么xd就是xn的值,否则就是xm的值。注意,为上面表格的值。
- Define:
CSEL <Xd>, <Xn>, <Xm>, <cond>
- Example1:
csel x1, x1, x2, EQ
-> 如果Z=1,x1维持原始值,否则x2给x1赋值 - Example2:
csel x1, x1, x2, MI
-> 如果N=1,x1维持原始值,否则x2给x1赋值
3.2 CSET
CSET, 条件置位指令,如果cond为真,那么xd就是1,否则就是0。注意,为上面表格的值。
- Define:
CSET <Xd>, <cond>
- Example1:
cset x1, EQ
-> 如果Z=1,x1是1, 否则为0 - Example2:
cset x1, MI
-> 如果N=1,x1是1, 否则为0
3.3 CSINC
CSINC,条件选择并增加指令 如果cond为真,那么xd就是xn的值,否则就是xm+1的值。注意,为上面表格的值。
- Define:
CSINC <Xd>, <Xn>, <Xm>, <cond>
- Example1:
csinc x1, x1, x2, EQ
-> 如果Z=1,x1维持x1, 否则为x2+1 - Example2:
csinc x1, x2, x3, MI
-> 如果N=1,x1为x2, 否则为x3+1
3.4 Example
用汇编实现下面的c代码:
unsigned long cel_test(unsigned long a, unsigned long b)
{
if (a == 0) {
return b + 2;
} else {
return b - 1;
}
}
分析拆解:
- 比较指令 a与0 的比较,a为0的时候 Z标志位可以使用,因此可以利用Z标识位条件EQ作为该分支的入口。
- b + 2和b-1 分支分别有个运算操作数的动作,确定 +2 还是 -1 可以把 2和 -1 放在一个寄存器里面,由 csel来判断那个值。
test_csel:
mov x2, #0x2
mov x3, #-0x1
cmp x0, #0
csel x4, x2, x3, EQ
add x0, x1, x4
ret
4. 跳转与返回指令
- B: b跳转指令, b 可以跳到PC ±128MB的范围, 不返回
- B. : 使用跳转指令
b.<cond>
,xx为以上表格的指,不返回 - BR: 跳转到寄存器指定的地址处,不返回
- BL:带返回地址的,PC±128MB, 用于跳转到子函数,返回地址为PC+4,设置到X30寄存器中。
- BLX: 跳转到寄存器指定的地址处,可以返回。返回地址保存到X30寄存器,保存的是父函数的PC+4
- RET: 从子函数返回,通常用X30里保存的返回地址返回。
- ERET:从当前的异常模式返回,通常可以实现模式切换,例如EL1切换到EL0。它会从SPSR恢复PSTATE,从ELR中获取跳转地址,并返回到该地址。
Example:
- 新建一个汇编文件
- 创建一个bl_test的汇编函数,在该汇编函数中使用bl指令来跳转到csel_test汇编函数中
- 在kernel.c文件中,C语言调用该bl_test汇编函数。
分析:
调用顺序应该是main -----> bl_test -----> csel_test ---> ret, 如果使用bl指令跳转到csel_test中,csel_test返回之后 bl_test拿到的是csel_test返回地址PC,而且X30寄存器被修改为csel_test子函数的地址,如果把PC+4返回给main函数,main函数看到的是当前的PC+4,肯定是错误的。这个难点就在于bl跳转子函数之后的返回需要处理好,重置X30寄存器的地址的值。
test_csel:
mov x2, #0x2
mov x3, #-0x1
cmp x0, #0
csel x4, x2, x3, EQ
add x0, x1, x4
ret
test_bl:
mov x8, x30 // 备份main函数call进来x30的lr的值,否则到这里函数回不去
mov x0, 1
mov x1, 3
bl test_csel // 跳转进入这个函数之后x30寄存器被test_csel子函数冲走了
mov x30, x8 // 恢复x30的值,此时ret之后可以回到main函数的地址继续执行
retå